These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 19052201)

  • 1. Learning-dependent structural plasticity in the adult olfactory pathway.
    Jones SV; Choi DC; Davis M; Ressler KJ
    J Neurosci; 2008 Dec; 28(49):13106-11. PubMed ID: 19052201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level.
    Cadiou H; Aoudé I; Tazir B; Molinas A; Fenech C; Meunier N; Grosmaitre X
    J Neurosci; 2014 Apr; 34(14):4857-70. PubMed ID: 24695705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mice with a "monoclonal nose": perturbations in an olfactory map impair odor discrimination.
    Fleischmann A; Shykind BM; Sosulski DL; Franks KM; Glinka ME; Mei DF; Sun Y; Kirkland J; Mendelsohn M; Albers MW; Axel R
    Neuron; 2008 Dec; 60(6):1068-81. PubMed ID: 19109912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extinction reverses olfactory fear-conditioned increases in neuron number and glomerular size.
    Morrison FG; Dias BG; Ressler KJ
    Proc Natl Acad Sci U S A; 2015 Oct; 112(41):12846-51. PubMed ID: 26420875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parental olfactory experience influences behavior and neural structure in subsequent generations.
    Dias BG; Ressler KJ
    Nat Neurosci; 2014 Jan; 17(1):89-96. PubMed ID: 24292232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple perceptible signals from a single olfactory glomerulus.
    Smear M; Resulaj A; Zhang J; Bozza T; Rinberg D
    Nat Neurosci; 2013 Nov; 16(11):1687-91. PubMed ID: 24056698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized vs. stimulus-specific learned fear differentially modifies stimulus encoding in primary sensory cortex of awake rats.
    Chen CF; Barnes DC; Wilson DA
    J Neurophysiol; 2011 Dec; 106(6):3136-44. PubMed ID: 21918001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning-Dependent and -Independent Enhancement of Mitral/Tufted Cell Glomerular Odor Responses Following Olfactory Fear Conditioning in Awake Mice.
    Ross JM; Fletcher ML
    J Neurosci; 2018 May; 38(20):4623-4640. PubMed ID: 29669746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Signaling Pathways Coordinately Regulate Forgetting of Olfactory Adaptation through Control of Sensory Responses in
    Kitazono T; Hara-Kuge S; Matsuda O; Inoue A; Fujiwara M; Ishihara T
    J Neurosci; 2017 Oct; 37(42):10240-10251. PubMed ID: 28924007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversing Behavioral, Neuroanatomical, and Germline Influences of Intergenerational Stress.
    Aoued HS; Sannigrahi S; Doshi N; Morrison FG; Linsenbaum H; Hunter SC; Walum H; Baman J; Yao B; Jin P; Ressler KJ; Dias BG
    Biol Psychiatry; 2019 Feb; 85(3):248-256. PubMed ID: 30292395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fear learning enhances neural responses to threat-predictive sensory stimuli.
    Kass MD; Rosenthal MC; Pottackal J; McGann JP
    Science; 2013 Dec; 342(6164):1389-1392. PubMed ID: 24337299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues.
    Li W; Howard JD; Parrish TB; Gottfried JA
    Science; 2008 Mar; 319(5871):1842-5. PubMed ID: 18369149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function follows form: ecological constraints on odor codes and olfactory percepts.
    Gottfried JA
    Curr Opin Neurobiol; 2009 Aug; 19(4):422-9. PubMed ID: 19671493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olfactory receptor and neural pathway responsible for highly selective sensing of musk odors.
    Shirasu M; Yoshikawa K; Takai Y; Nakashima A; Takeuchi H; Sakano H; Touhara K
    Neuron; 2014 Jan; 81(1):165-78. PubMed ID: 24361078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Odorant concentration differentiator for intermittent olfactory signals.
    Fujiwara T; Kazawa T; Sakurai T; Fukushima R; Uchino K; Yamagata T; Namiki S; Haupt SS; Kanzaki R
    J Neurosci; 2014 Dec; 34(50):16581-93. PubMed ID: 25505311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of glomerular morphology in the olfactory bulb of young mice after disruption caused by continuous odorant exposure.
    Monjaraz-Fuentes F; Millán-Adalco D; Palomero-Rivero M; Hudson R; Drucker-Colín R
    Brain Res; 2017 Sep; 1670():6-13. PubMed ID: 28583862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial effects of odorant mixes in olfactory cortex.
    Zou Z; Buck LB
    Science; 2006 Mar; 311(5766):1477-81. PubMed ID: 16527983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities.
    MaBouDi H; Shimazaki H; Giurfa M; Chittka L
    PLoS Comput Biol; 2017 Jun; 13(6):e1005551. PubMed ID: 28640825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Symmetry, stereotypy, and topography of odorant representations in mouse olfactory bulbs.
    Belluscio L; Katz LC
    J Neurosci; 2001 Mar; 21(6):2113-22. PubMed ID: 11245695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning modifies odor mixture processing to improve detection of relevant components.
    Chen JY; Marachlian E; Assisi C; Huerta R; Smith BH; Locatelli F; Bazhenov M
    J Neurosci; 2015 Jan; 35(1):179-97. PubMed ID: 25568113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.