BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 19052316)

  • 21. Digital transcriptome analysis indicates adaptive mechanisms in the heart of a hibernating mammal.
    Brauch KM; Dhruv ND; Hanse EA; Andrews MT
    Physiol Genomics; 2005 Oct; 23(2):227-34. PubMed ID: 16076930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of Akt during torpor in the hibernating ground squirrel, Ictidomys tridecemlineatus.
    McMullen DC; Hallenbeck JM
    J Comp Physiol B; 2010 Aug; 180(6):927-34. PubMed ID: 20352231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of microRNA expression during the torpor-arousal cycle of a mammalian hibernator, the 13-lined ground squirrel.
    Wu CW; Biggar KK; Luu BE; Szereszewski KE; Storey KB
    Physiol Genomics; 2016 Jun; 48(6):388-96. PubMed ID: 27084747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of liver metabolites in three stages of the circannual hibernation cycle in 13-lined ground squirrels by NMR.
    Serkova NJ; Rose JC; Epperson LE; Carey HV; Martin SL
    Physiol Genomics; 2007 Sep; 31(1):15-24. PubMed ID: 17536023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of the hibernation cycle using LC-MS-based metabolomics in ground squirrel liver.
    Nelson CJ; Otis JP; Martin SL; Carey HV
    Physiol Genomics; 2009 Mar; 37(1):43-51. PubMed ID: 19106184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Circulation and metabolic rates in a natural hibernator: an integrative physiological model.
    Hampton M; Nelson BT; Andrews MT
    Am J Physiol Regul Integr Comp Physiol; 2010 Dec; 299(6):R1478-88. PubMed ID: 20844258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acetyl-CoA carboxylase control of fatty acid oxidation in hearts from hibernating Richardson's ground squirrels.
    Belke DD; Wang LC; Lopaschuk GD
    Biochim Biophys Acta; 1998 Mar; 1391(1):25-36. PubMed ID: 9518540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An improved method for detecting torpor entrance and arousal in a mammalian hibernator using heart rate data.
    MacCannell ADV; Jackson EC; Mathers KE; Staples JF
    J Exp Biol; 2018 Feb; 221(Pt 4):. PubMed ID: 29361606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mild experimental ketosis increases brain uptake of 11C-acetoacetate and 18F-fluorodeoxyglucose: a dual-tracer PET imaging study in rats.
    Pifferi F; Tremblay S; Croteau E; Fortier M; Tremblay-Mercier J; Lecomte R; Cunnane SC
    Nutr Neurosci; 2011 Mar; 14(2):51-8. PubMed ID: 21605500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Skeletal muscle proteomics: carbohydrate metabolism oscillates with seasonal and torpor-arousal physiology of hibernation.
    Hindle AG; Karimpour-Fard A; Epperson LE; Hunter LE; Martin SL
    Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1440-52. PubMed ID: 21865542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in the mitochondrial phosphoproteome during mammalian hibernation.
    Chung DJ; Szyszka B; Brown JC; Hüner NP; Staples JF
    Physiol Genomics; 2013 May; 45(10):389-99. PubMed ID: 23572536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pattern of cellular quiescence over the hibernation cycle in liver of thirteen-lined ground squirrels.
    Wu CW; Storey KB
    Cell Cycle; 2012 May; 11(9):1714-26. PubMed ID: 22510572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hibernation-based blood loss therapy increases survivability of lethal hemorrhagic shock in rats.
    Perez de Lara Rodriguez CE; Drewes LR; Andrews MT
    J Comp Physiol B; 2017 Jul; 187(5-6):769-778. PubMed ID: 28324159
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-tissue profile of NFκB pathway regulation during mammalian hibernation.
    Hadj-Moussa H; Wijenayake S; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2020; 246-247():110460. PubMed ID: 32445797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coordinate expression of the PDK4 gene: a means of regulating fuel selection in a hibernating mammal.
    Buck MJ; Squire TL; Andrews MT
    Physiol Genomics; 2002 Feb; 8(1):5-13. PubMed ID: 11842126
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cholesterol and lipoprotein dynamics in a hibernating mammal.
    Otis JP; Sahoo D; Drover VA; Yen CL; Carey HV
    PLoS One; 2011; 6(12):e29111. PubMed ID: 22195001
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Epigenetic regulation by DNA methyltransferases during torpor in the thirteen-lined ground squirrel Ictidomys tridecemlineatus.
    Tessier SN; Ingelson-Filpula WA; Storey KB
    Mol Cell Biochem; 2021 Nov; 476(11):3975-3985. PubMed ID: 34191233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial and temporal activation of brain regions in hibernation: c-fos expression during the hibernation bout in thirteen-lined ground squirrel.
    Bratincsák A; McMullen D; Miyake S; Tóth ZE; Hallenbeck JM; Palkovits M
    J Comp Neurol; 2007 Dec; 505(4):443-58. PubMed ID: 17912746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced oxidative capacity of ground squirrel brain mitochondria during hibernation.
    Ballinger MA; Schwartz C; Andrews MT
    Am J Physiol Regul Integr Comp Physiol; 2017 Mar; 312(3):R301-R310. PubMed ID: 28077389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning and expression of hypoxia-inducible factor 1alpha from the hibernating ground squirrel, Spermophilus tridecemlineatus.
    Morin P; Storey KB
    Biochim Biophys Acta; 2005 May; 1729(1):32-40. PubMed ID: 15811624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.