These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 19052625)
1. Large tundra methane burst during onset of freezing. Mastepanov M; Sigsgaard C; Dlugokencky EJ; Houweling S; Ström L; Tamstorf MP; Christensen TR Nature; 2008 Dec; 456(7222):628-30. PubMed ID: 19052625 [TBL] [Abstract][Full Text] [Related]
2. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Bloom AA; Palmer PI; Fraser A; Reay DS; Frankenberg C Science; 2010 Jan; 327(5963):322-5. PubMed ID: 20075250 [TBL] [Abstract][Full Text] [Related]
3. Cold season emissions dominate the Arctic tundra methane budget. Zona D; Gioli B; Commane R; Lindaas J; Wofsy SC; Miller CE; Dinardo SJ; Dengel S; Sweeney C; Karion A; Chang RY; Henderson JM; Murphy PC; Goodrich JP; Moreaux V; Liljedahl A; Watts JD; Kimball JS; Lipson DA; Oechel WC Proc Natl Acad Sci U S A; 2016 Jan; 113(1):40-5. PubMed ID: 26699476 [TBL] [Abstract][Full Text] [Related]
4. Changing boreal methane sources and constant biomass burning during the last termination. Fischer H; Behrens M; Bock M; Richter U; Schmitt J; Loulergue L; Chappellaz J; Spahni R; Blunier T; Leuenberger M; Stocker TF Nature; 2008 Apr; 452(7189):864-7. PubMed ID: 18421351 [TBL] [Abstract][Full Text] [Related]
5. Emission of CO2, CH4 and N2O from freshwater marsh in northeast of China. Song C; Zhang J; Wang Y; Wang Y; Zhao Z J Environ Manage; 2008 Aug; 88(3):428-36. PubMed ID: 17517465 [TBL] [Abstract][Full Text] [Related]
6. Contribution of anthropogenic and natural sources to atmospheric methane variability. Bousquet P; Ciais P; Miller JB; Dlugokencky EJ; Hauglustaine DA; Prigent C; Van der Werf GR; Peylin P; Brunke EG; Carouge C; Langenfelds RL; Lathière J; Papa F; Ramonet M; Schmidt M; Steele LP; Tyler SC; White J Nature; 2006 Sep; 443(7110):439-43. PubMed ID: 17006511 [TBL] [Abstract][Full Text] [Related]
7. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Loulergue L; Schilt A; Spahni R; Masson-Delmotte V; Blunier T; Lemieux B; Barnola JM; Raynaud D; Stocker TF; Chappellaz J Nature; 2008 May; 453(7193):383-6. PubMed ID: 18480822 [TBL] [Abstract][Full Text] [Related]
8. Toward a statistical description of methane emissions from arctic wetlands. Pirk N; Mastepanov M; López-Blanco E; Christensen LH; Christiansen HH; Hansen BU; Lund M; Parmentier FW; Skov K; Christensen TR Ambio; 2017 Feb; 46(Suppl 1):70-80. PubMed ID: 28116692 [TBL] [Abstract][Full Text] [Related]
9. Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in europe. Søvik AK; Augustin J; Heikkinen K; Huttunen JT; Necki JM; Karjalainen SM; Kløve B; Liikanen A; Mander U; Puustinen M; Teiter S; Wachniew P J Environ Qual; 2006; 35(6):2360-73. PubMed ID: 17071907 [TBL] [Abstract][Full Text] [Related]
10. Nongrowing season methane emissions-a significant component of annual emissions across northern ecosystems. Treat CC; Bloom AA; Marushchak ME Glob Chang Biol; 2018 Aug; 24(8):3331-3343. PubMed ID: 29569301 [TBL] [Abstract][Full Text] [Related]
11. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Walter KM; Zimov SA; Chanton JP; Verbyla D; Chapin FS Nature; 2006 Sep; 443(7107):71-5. PubMed ID: 16957728 [TBL] [Abstract][Full Text] [Related]
12. Methane emissions from a constructed wetland treating wastewater--seasonal and spatial distribution and dependence on edaphic factors. Johansson AE; Gustavsson AM; Oquist MG; Svensson BH Water Res; 2004 Nov; 38(18):3960-70. PubMed ID: 15380986 [TBL] [Abstract][Full Text] [Related]
13. Large emissions from floodplain trees close the Amazon methane budget. Pangala SR; Enrich-Prast A; Basso LS; Peixoto RB; Bastviken D; Hornibrook ERC; Gatti LV; Marotta H; Calazans LSB; Sakuragui CM; Bastos WR; Malm O; Gloor E; Miller JB; Gauci V Nature; 2017 Dec; 552(7684):230-234. PubMed ID: 29211724 [TBL] [Abstract][Full Text] [Related]
14. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Turetsky MR; Kotowska A; Bubier J; Dise NB; Crill P; Hornibrook ER; Minkkinen K; Moore TR; Myers-Smith IH; Nykänen H; Olefeldt D; Rinne J; Saarnio S; Shurpali N; Tuittila ES; Waddington JM; White JR; Wickland KP; Wilmking M Glob Chang Biol; 2014 Jul; 20(7):2183-97. PubMed ID: 24777536 [TBL] [Abstract][Full Text] [Related]
15. Methane emissions from terrestrial plants under aerobic conditions. Keppler F; Hamilton JT; Brass M; Röckmann T Nature; 2006 Jan; 439(7073):187-91. PubMed ID: 16407949 [TBL] [Abstract][Full Text] [Related]
16. An ecological perspective on methane emissions from northern wetlands. Bubier JL; Moore TR Trends Ecol Evol; 1994 Dec; 9(12):460-4. PubMed ID: 21236923 [TBL] [Abstract][Full Text] [Related]
17. Increased terrestrial methane cycling at the Palaeocene-Eocene thermal maximum. Pancost RD; Steart DS; Handley L; Collinson ME; Hooker JJ; Scott AC; Grassineau NV; Glasspool IJ Nature; 2007 Sep; 449(7160):332-5. PubMed ID: 17882218 [TBL] [Abstract][Full Text] [Related]
18. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Piao S; Ciais P; Friedlingstein P; Peylin P; Reichstein M; Luyssaert S; Margolis H; Fang J; Barr A; Chen A; Grelle A; Hollinger DY; Laurila T; Lindroth A; Richardson AD; Vesala T Nature; 2008 Jan; 451(7174):49-52. PubMed ID: 18172494 [TBL] [Abstract][Full Text] [Related]
19. Possible methane-induced polar warming in the early Eocene. Sloan LC; Walker JC; Moore TC; Rea DK; Zachos JC Nature; 1992 May; 357(6376):320-2. PubMed ID: 11536496 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of methane emissions from a freshwater marsh of northeast China. Yang W; Song C; Zhang J Sci Total Environ; 2006 Dec; 371(1-3):286-92. PubMed ID: 17023025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]