These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19052793)

  • 21. Toxicity profile of labile preservative bronopol in water: the role of more persistent and toxic transformation products.
    Cui N; Zhang X; Xie Q; Wang S; Chen J; Huang L; Qiao X; Li X; Cai X
    Environ Pollut; 2011 Feb; 159(2):609-15. PubMed ID: 21035931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genotoxic effects of chlorophenoxy herbicide diclofop-methyl in mice in vivo and in human lymphocytes in vitro.
    Ünal F; Yüzbaşıoğlu D; Yilmaz S; Akinci N; Aksoy H
    Drug Chem Toxicol; 2011 Oct; 34(4):390-5. PubMed ID: 21714768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of salinity on the toxicity of selected sulfonamides and trimethoprim towards the green algae Chlorella vulgaris.
    Borecka M; Białk-Bielińska A; Haliński ŁP; Pazdro K; Stepnowski P; Stolte S
    J Hazard Mater; 2016 May; 308():179-86. PubMed ID: 26835894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The toxicity of Roundup® 360 SL formulation and its main constituents: glyphosate and isopropylamine towards non-target water photoautotrophs.
    Lipok J; Studnik H; Gruyaert S
    Ecotoxicol Environ Saf; 2010 Oct; 73(7):1681-8. PubMed ID: 20813408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris.
    Gong N; Shao K; Feng W; Lin Z; Liang C; Sun Y
    Chemosphere; 2011 Apr; 83(4):510-6. PubMed ID: 21216429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel esterase LanE from Edaphocola flava HME-24 and the enantioselective degradation mechanism of herbicide lactofen.
    Hu T; Xiang Y; Chen Q; Shang N; Xu M; Huang X
    Ecotoxicol Environ Saf; 2020 Dec; 205():111141. PubMed ID: 32846294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental significance of the diclofop-methyl and cyclodextrin inclusion complexes.
    Cai X; Zhang A; Liu W
    J Environ Sci Health B; 2006; 41(7):1115-29. PubMed ID: 16923595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A multipronged QSAR approach to predict algal low-toxic-effect concentrations of substituted phenols and anilines.
    Tugcu G; Saçan MT
    J Hazard Mater; 2018 Feb; 344():893-901. PubMed ID: 29190587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Toxicity of a Binary Mixture of TiO
    Adochite C; Andronic L
    Int J Environ Res Public Health; 2021 Jul; 18(15):. PubMed ID: 34360075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A strategy for an initial assessment of the ecotoxicological effects of transformation products of pesticides in aquatic systems following a tiered approach.
    Hensen B; Olsson O; Kümmerer K
    Environ Int; 2020 Apr; 137():105533. PubMed ID: 32113087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probabilistic risk assessment of diuron and prometryn in the Gwydir River catchment, Australia, with the input of a novel bioassay based on algal growth.
    Shi Y; Burns M; Ritchie RJ; Crossan A; Kennedy IR
    Ecotoxicol Environ Saf; 2014 Aug; 106():213-9. PubMed ID: 24859706
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unraveling the toxicity mechanisms of the herbicide diclofop-methyl in rice: modulation of the activity of key enzymes involved in citrate metabolism and induction of cell membrane anion channels.
    Ding H; Lu H; Lavoie M; Xie J; Li Y; Lv X; Fu Z; Qian H
    J Agric Food Chem; 2014 Nov; 62(44):10654-60. PubMed ID: 25307187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.
    Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B
    J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of amicarbazone toxicity removal through degradation processes based on hydroxyl and sulfate radicals.
    Graça CAL; Maniero MG; De Andrade LM; Roberto Guimarães J; Teixeira ACSC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(11):1126-1143. PubMed ID: 31328643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties.
    Könnecker G; Regelmann J; Belanger S; Gamon K; Sedlak R
    Ecotoxicol Environ Saf; 2011 Sep; 74(6):1445-60. PubMed ID: 21550112
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of mesotrione on oxidative stress, subcellular structure, and membrane integrity in Chlorella vulgaris.
    Zhang F; Yao X; Sun S; Wang L; Liu W; Jiang X; Wang J
    Chemosphere; 2020 May; 247():125668. PubMed ID: 31931307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of toxic effects of platinum-based antineoplastic drugs (cisplatin, carboplatin and oxaliplatin) on green alga Chlorella vulgaris.
    Dehghanpour S; Pourzamani HR; Amin MM; Ebrahimpour K
    Aquat Toxicol; 2020 Jun; 223():105495. PubMed ID: 32371336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spectroscopic probe to contribution of physicochemical transformations in the toxicity of aged ZnO NPs to Chlorella vulgaris: new insight into the variation of toxicity of ZnO NPs under aging process.
    Zhang H; Huang Q; Xu A; Wu L
    Nanotoxicology; 2016 Oct; 10(8):1177-87. PubMed ID: 27248459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ah receptor agonists in UV-exposed toluene solutions of decabromodiphenyl ether (decaBDE) and in soils contaminated with polybrominated diphenyl ethers (PBDEs).
    Olsman H; Hagberg J; Kalbin G; Julander A; van Bavel B; Strid A; Tysklind M; Engwall M
    Environ Sci Pollut Res Int; 2006 May; 13(3):161-9. PubMed ID: 16758706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.