BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1905283)

  • 1. Growth of Bacillus cereus in fermenting tempeh made from various beans and its inhibition by Lactobacillus plantarum.
    Ashenafi M; Busse M
    J Appl Bacteriol; 1991 Apr; 70(4):329-33. PubMed ID: 1905283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The microflora of soak water during tempeh production from various beans.
    Ashenafi M; Busse M
    J Appl Bacteriol; 1991 Apr; 70(4):334-8. PubMed ID: 2055793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory Effect of Lactobacillus plantarum on Salmonella infantis , Enterobacter aerogenes and Escherichia coli during Tempeh Fermentation.
    Ashenafi M; Busse M
    J Food Prot; 1989 Mar; 52(3):169-172. PubMed ID: 30991510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Bacillus cereus by strains of Lactobacillus and Lactococcus in milk.
    Røssland E; Andersen Borge GI; Langsrud T; Sørhaug T
    Int J Food Microbiol; 2003 Dec; 89(2-3):205-12. PubMed ID: 14623386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of "siljo" fermentation on growth of Staphylococcus aureus, Bacillus cereus and Listeria monocytogenes.
    Dessie G; Abegaz K; Ashenafi M
    Ethiop Med J; 1997 Oct; 35(4):215-23. PubMed ID: 10214435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of lactic acid bacteria and Rhizopus oligosporus during barley tempeh fermentation.
    Feng XM; Eriksson AR; Schnürer J
    Int J Food Microbiol; 2005 Oct; 104(3):249-56. PubMed ID: 15979185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of controlled lactic fermentation on growth and sporulation of Bacillus cereus in milk.
    Røssland E; Langsrud T; Sørhaug T
    Int J Food Microbiol; 2005 Aug; 103(1):69-77. PubMed ID: 16084267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antagonistics against pathogenic Bacillus cereus in milk fermentation by Lactobacillus plantarum ZDY2013 and its anti-adhesion effect on Caco-2 cells against pathogens.
    Zhang Z; Tao X; Shah NP; Wei H
    J Dairy Sci; 2016 Apr; 99(4):2666-2674. PubMed ID: 26830743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival of Bacillus cereus vegetative cells during Spanish-style fermentation of conservolea green olives.
    Panagou EZ; Tassou CC; Vamvakoula P; Saravanos EK; Nychas GJ
    J Food Prot; 2008 Jul; 71(7):1393-400. PubMed ID: 18680938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of controlled lactic acid fermentation on selected bioactive and nutritional parameters of tempeh obtained from unhulled common bean (Phaseolus vulgaris) seeds.
    Starzyńska-Janiszewska A; Stodolak B; Mickowska B
    J Sci Food Agric; 2014 Jan; 94(2):359-66. PubMed ID: 24037686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth inhibitory effects of kimchi (Korean traditional fermented vegetable product) against Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus.
    Kim YS; Zheng ZB; Shin DH
    J Food Prot; 2008 Feb; 71(2):325-32. PubMed ID: 18326182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of antimicrobial metabolites by strains of Lactobacillus or Lactococcus co-cultured with Bacillus cereus in milk.
    Røssland E; Langsrud T; Granum PE; Sørhaug T
    Int J Food Microbiol; 2005 Feb; 98(2):193-200. PubMed ID: 15681046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Bacillus cereus Growth and Toxin Production by Bacillus amyloliquefaciens RD7-7 in Fermented Soybean Products.
    Eom JS; Choi HS
    J Microbiol Biotechnol; 2016 Jan; 26(1):44-55. PubMed ID: 26528531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a single and combined inoculation of a Lactobacillus pentosus starter for processing cv. Arbequina natural green olives.
    Hurtado A; Reguant C; Bordons A; Rozès N
    Food Microbiol; 2010 Sep; 27(6):731-40. PubMed ID: 20630314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in numbers and kinds of bacteria during a chickpea submerged fermentation used as a leavening agent for bread production.
    Hatzikamari M; Yiangou M; Tzanetakis N; Litopoulou-Tzanetaki E
    Int J Food Microbiol; 2007 May; 116(1):37-43. PubMed ID: 17300848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probiotic potential of lactobacillus strains isolated from sorghum-based traditional fermented food.
    Rao KP; Chennappa G; Suraj U; Nagaraja H; Raj AP; Sreenivasa MY
    Probiotics Antimicrob Proteins; 2015 Jun; 7(2):146-56. PubMed ID: 25666113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Bacillus cereus growth by bacteriocin producing Bacillus subtilis isolated from fermented baobab seeds (maari) is substrate dependent.
    Kaboré D; Nielsen DS; Sawadogo-Lingani H; Diawara B; Dicko MH; Jakobsen M; Thorsen L
    Int J Food Microbiol; 2013 Mar; 162(1):114-9. PubMed ID: 23376785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The occurrence and growth of microorganisms during the fermentation of fish sausage.
    Aryanta RW; Fleet GH; Buckle KA
    Int J Food Microbiol; 1991 Jun; 13(2):143-55. PubMed ID: 1909546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethra macrophylla Benth) for production of Ugba.
    Ahaotu I; Anyogu A; Njoku OH; Odu NN; Sutherland JP; Ouoba LI
    Int J Food Microbiol; 2013 Mar; 162(1):95-104. PubMed ID: 23376783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Predictive Model for Growth of Bacillus cereus from Spores in Cooked Beans.
    Juneja VK; Mishra A; Pradhan AK
    J Food Prot; 2018 Feb; 81(2):308-315. PubMed ID: 29369689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.