These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 19052889)

  • 1. Arsenic accumulation in lichens of Mandav monuments, Dhar district, Madhya Pradesh, India.
    Bajpai R; Upreti DK; Dwivedi SK
    Environ Monit Assess; 2009 Dec; 159(1-4):437-42. PubMed ID: 19052889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive monitoring of atmospheric heavy metals in a historical city of central India by Lepraria lobificans Nyl.
    Bajpai R; Upreti DK; Dwivedi SK
    Environ Monit Assess; 2010 Jul; 166(1-4):477-84. PubMed ID: 19496009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation and toxic effect of arsenic and other heavy metals in a contaminated area of West Bengal, India, in the lichen Pyxine cocoes (Sw.) Nyl.
    Bajpai R; Upreti DK
    Ecotoxicol Environ Saf; 2012 Sep; 83():63-70. PubMed ID: 22762786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of atmospheric heavy metals using two lichen species in Katni and Rewa cities, India.
    Bajpai R; Mishra GK; Mohabe S; Upreti DK; Nayaka S
    J Environ Biol; 2011 Mar; 32(2):195-9. PubMed ID: 21882655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lichens as bioindicators of atmospheric heavy metal pollution in Singapore.
    Ng OH; Tan BC; Obbard JP
    Environ Monit Assess; 2006 Dec; 123(1-3):63-74. PubMed ID: 17082905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution patterns of arsenic species in a lichen biomonitor.
    Kroukamp EM; Godeto TW; Forbes PBC
    Chemosphere; 2020 Jul; 250():126199. PubMed ID: 32092568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal accumulation in lichens growing in north side of Lucknow city, India.
    Saxena S; Upreti DK; Sharma N
    J Environ Biol; 2007 Jan; 28(1):49-51. PubMed ID: 17717985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences.
    Backor M; Peksa O; Skaloud P; Backorová M
    Ecotoxicol Environ Saf; 2010 May; 73(4):603-12. PubMed ID: 20031214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic accumulation and thiol status in lichens exposed to As(V) in controlled conditions.
    Mrak T; Jeran Z; Batic F; di Toppi LS
    Biometals; 2010 Apr; 23(2):207-19. PubMed ID: 19936941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selecting lichen functional traits as ecological indicators of the effects of urban environment.
    Koch NM; Matos P; Branquinho C; Pinho P; Lucheta F; Martins SMA; Vargas VMF
    Sci Total Environ; 2019 Mar; 654():705-713. PubMed ID: 30448661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO
    Palmqvist K; Dahlman L; Valladares F; Tehler A; Sancho LG; Mattsson JE
    Oecologia; 2002 Nov; 133(3):295-306. PubMed ID: 28466222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation by solid-phase microextraction and gas chromatography/mass spectrometry of secondary metabolites in lichens deposited on stone monuments.
    De Angelis F; Ceci R; Quaresima R; Reale S; Di Tullio A
    Rapid Commun Mass Spectrom; 2003; 17(6):526-31. PubMed ID: 12621613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different Heavy Metal Accumulation Strategies of Epilithic Lichens Colonising Artificial Post-Smelting Wastes.
    Rola K; Osyczka P; Kafel A
    Arch Environ Contam Toxicol; 2016 Feb; 70(2):418-28. PubMed ID: 26155778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of trace elements in the peripheral and central parts of two species of epiphytic lichens transplanted to a polluted site in Portugal.
    Godinho RM; Verburg TG; Freitas MC; Wolterbeek HT
    Environ Pollut; 2009 Jan; 157(1):102-9. PubMed ID: 18799248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of two noninvasive methods for measuring the pigment content in foliose macrolichens.
    Liu S; Li S; Fan XY; Yuan GD; Hu T; Shi XM; Huang JB; Pu XY; Wu CS
    Photosynth Res; 2019 Aug; 141(2):245-257. PubMed ID: 30729446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new measurement tool to consider for airborne pollutants evaluations using lichens.
    Catán SP; Bubach D; Messuti MI
    Environ Sci Pollut Res Int; 2019 May; 26(14):14689-14692. PubMed ID: 30937743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pollution monitoring with the help of lichen transplant technique at some residential sites of Lucknow City, Uttar Pradesh.
    Bajpai R; Upreti DK; Mishra SK
    J Environ Biol; 2004 Apr; 25(2):191-5. PubMed ID: 15529878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic and inorganic nitrogen uptake in lichens.
    Dahlman L; Persson J; Palmqvist K; Näsholm T
    Planta; 2004 Jul; 219(3):459-67. PubMed ID: 15060826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc concentrations in marine macroalgae and a lichen from western Ireland in relation to phylogenetic grouping, habitat and morphology.
    Stengel DB; Macken A; Morrison L; Morley N
    Mar Pollut Bull; 2004 May; 48(9-10):902-9. PubMed ID: 15111037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent growth of two old-growth associated macrolichen species.
    Gauslaa Y; Palmqvist K; Solhaug KA; Hilmo O; Holien H; Nybakken L; Ohlson M
    New Phytol; 2009; 181(3):683-92. PubMed ID: 19032441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.