BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 19052972)

  • 21. Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL).
    Lundin J; Kimby E; Björkholm M; Broliden PA; Celsing F; Hjalmar V; Möllgård L; Rebello P; Hale G; Waldmann H; Mellstedt H; Osterborg A
    Blood; 2002 Aug; 100(3):768-73. PubMed ID: 12130484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anti-CD52 antibody, alemtuzumab, binds to Langerhans cells in Langerhans cell histiocytosis.
    Jordan MB; McClain KL; Yan X; Hicks J; Jaffe R
    Pediatr Blood Cancer; 2005 Mar; 44(3):251-4. PubMed ID: 15390358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H.
    Ginaldi L; De Martinis M; Matutes E; Farahat N; Morilla R; Dyer MJ; Catovsky D
    Leuk Res; 1998 Feb; 22(2):185-91. PubMed ID: 9593475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficacy and tolerability of alemtuzumab (CAMPATH-1H) in the salvage treatment of B-cell chronic lymphocytic leukemia--change of regimen needed?
    Rieger K; Von Grünhagen U; Fietz T; Thiel E; Knauf W
    Leuk Lymphoma; 2004 Feb; 45(2):345-9. PubMed ID: 15101722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alemtuzumab in CLL and other lymphoid neoplasms.
    Ravandi F; O'brien S
    Cancer Invest; 2006 Nov; 24(7):718-25. PubMed ID: 17118783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Therapeutic implications of variable expression of CD52 on clonal cytotoxic T cells in CD8+ large granular lymphocyte leukemia.
    Mohan SR; Clemente MJ; Afable M; Cazzolli HN; Bejanyan N; Wlodarski MW; Lichtin AE; Maciejewski JP
    Haematologica; 2009 Oct; 94(10):1407-14. PubMed ID: 19794084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting CD52 as a novel therapeutic strategy in angioimmunoblastic T-cell lymphoma.
    Dunleavy K; Wilson WH
    Leuk Lymphoma; 2010 Sep; 51(9):1583-4. PubMed ID: 20795788
    [No Abstract]   [Full Text] [Related]  

  • 28. Clonal CD8+ and CD52- T cells are induced in responding B cell lymphoma patients treated with Campath-1H (anti-CD52).
    Osterborg A; Werner A; Halapi E; Lundin J; Harmenberg U; Wigzell H; Mellstedt H
    Eur J Haematol; 1997 Jan; 58(1):5-13. PubMed ID: 9020367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alemtuzumab depletes dendritic cells more effectively in blood than in skin: a pilot study in patients with chronic lymphocytic leukemia.
    Auffermann-Gretzinger S; Eger L; Schetelig J; Bornhäuser M; Heidenreich F; Ehninger G
    Transplantation; 2007 May; 83(9):1268-72. PubMed ID: 17496545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alemtuzumab.
    Ravandi F; O'Brien S
    Expert Rev Anticancer Ther; 2005 Feb; 5(1):39-51. PubMed ID: 15757437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variable CD52 expression in mature T cell and NK cell malignancies: implications for alemtuzumab therapy.
    Jiang L; Yuan CM; Hubacheck J; Janik JE; Wilson W; Morris JC; Jasper GA; Stetler-Stevenson M
    Br J Haematol; 2009 Apr; 145(2):173-9. PubMed ID: 19236377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of CD52 on plasma cells in plasma cell proliferative disorders.
    Kumar S; Kimlinger TK; Lust JA; Donovan K; Witzig TE
    Blood; 2003 Aug; 102(3):1075-7. PubMed ID: 12714489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential CD52 expression by distinct myeloid dendritic cell subsets: implications for alemtuzumab activity at the level of antigen presentation in allogeneic graft-host interactions in transplantation.
    Ratzinger G; Reagan JL; Heller G; Busam KJ; Young JW
    Blood; 2003 Feb; 101(4):1422-9. PubMed ID: 12393688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of alemtuzumab on neoplastic B cells.
    Golay J; Manganini M; Rambaldi A; Introna M
    Haematologica; 2004 Dec; 89(12):1476-83. PubMed ID: 15590398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alemtuzumab in the treatment of chronic lymphocytic lymphoma.
    Boyd K; Dearden CE
    Expert Rev Anticancer Ther; 2008 Apr; 8(4):525-33. PubMed ID: 18402519
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CD52 over-expression affects rituximab-associated complement-mediated cytotoxicity but not antibody-dependent cellular cytotoxicity: preclinical evidence that targeting CD52 with alemtuzumab may reverse acquired resistance to rituximab in non-Hodgkin lymphoma.
    Cruz RI; Hernandez-Ilizaliturri FJ; Olejniczak S; Deeb G; Knight J; Wallace P; Thurberg BL; Kennedy W; Czuczman MS
    Leuk Lymphoma; 2007 Dec; 48(12):2424-36. PubMed ID: 18067019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alemtuzumab for B-cell chronic lymphocytic leukemia.
    Robak T
    Expert Rev Anticancer Ther; 2008 Jul; 8(7):1033-51. PubMed ID: 18588450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alemtuzumab as consolidation after a response to fludarabine is effective in purging residual disease in patients with chronic lymphocytic leukemia.
    Montillo M; Tedeschi A; Miqueleiz S; Veronese S; Cairoli R; Intropido L; Ricci F; Colosimo A; Scarpati B; Montagna M; Nichelatti M; Regazzi M; Morra E
    J Clin Oncol; 2006 May; 24(15):2337-42. PubMed ID: 16618945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monoclonal antibody therapy of leukaemias and lymphomas.
    Jacobs SA; Foon KA
    Expert Opin Biol Ther; 2005 Sep; 5(9):1225-43. PubMed ID: 16120052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alemtuzumab induces caspase-independent cell death in human chronic lymphocytic leukemia cells through a lipid raft-dependent mechanism.
    Mone AP; Cheney C; Banks AL; Tridandapani S; Mehter N; Guster S; Lin T; Eisenbeis CF; Young DC; Byrd JC
    Leukemia; 2006 Feb; 20(2):272-9. PubMed ID: 16341049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.