BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19053140)

  • 1. NetPhosBac - a predictor for Ser/Thr phosphorylation sites in bacterial proteins.
    Miller ML; Soufi B; Jers C; Blom N; Macek B; Mijakovic I
    Proteomics; 2009 Jan; 9(1):116-25. PubMed ID: 19053140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of protein phosphorylation on Ser/Thr/Tyr in Bacillus subtilis.
    Eymann C; Becher D; Bernhardt J; Gronau K; Klutzny A; Hecker M
    Proteomics; 2007 Oct; 7(19):3509-26. PubMed ID: 17726680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins.
    Soufi B; Gnad F; Jensen PR; Petranovic D; Mann M; Mijakovic I; Macek B
    Proteomics; 2008 Sep; 8(17):3486-93. PubMed ID: 18668697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting posttranslational modifications of bacterial SSB proteins.
    Vujaklija D; Macek B
    Methods Mol Biol; 2012; 922():205-18. PubMed ID: 22976189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae.
    Sun X; Ge F; Xiao CL; Yin XF; Ge R; Zhang LH; He QY
    J Proteome Res; 2010 Jan; 9(1):275-82. PubMed ID: 19894762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the dynamic Bacillus subtilis Ser/Thr/Tyr phosphoproteome implicated in a wide variety of cellular processes.
    Lévine A; Vannier F; Absalon C; Kuhn L; Jackson P; Scrivener E; Labas V; Vinh J; Courtney P; Garin J; Séror SJ
    Proteomics; 2006 Apr; 6(7):2157-73. PubMed ID: 16493705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GANNPhos: a new phosphorylation site predictor based on a genetic algorithm integrated neural network.
    Tang YR; Chen YZ; Canchaya CA; Zhang Z
    Protein Eng Des Sel; 2007 Aug; 20(8):405-12. PubMed ID: 17652129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation.
    Macek B; Gnad F; Soufi B; Kumar C; Olsen JV; Mijakovic I; Mann M
    Mol Cell Proteomics; 2008 Feb; 7(2):299-307. PubMed ID: 17938405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and computational characterization of the dimerization of the PTS-regulation domains of BglG from Escherichia coli.
    Ben-Zeev E; Fux L; Amster-Choder O; Eisenstein M
    J Mol Biol; 2005 Apr; 347(4):693-706. PubMed ID: 15769463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of proteins to different environments: a comparison of proteome structural properties in Bacillus subtilis and Escherichia coli.
    Marashi SA; Behrouzi R; Pezeshk H
    J Theor Biol; 2007 Jan; 244(1):127-32. PubMed ID: 16945389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of the phosphorylation state of the HPr protein of the phosphotransferase system in Bacillus subtilis: implication of the protein phosphatase PrpC.
    Singh KD; Halbedel S; Görke B; Stülke J
    J Mol Microbiol Biotechnol; 2007; 13(1-3):165-71. PubMed ID: 17693724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins.
    Diella F; Cameron S; Gemünd C; Linding R; Via A; Kuster B; Sicheritz-Pontén T; Blom N; Gibson TJ
    BMC Bioinformatics; 2004 Jun; 5():79. PubMed ID: 15212693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimentally constrained topology models for 51,208 bacterial inner membrane proteins.
    Granseth E; Daley DO; Rapp M; Melén K; von Heijne G
    J Mol Biol; 2005 Sep; 352(3):489-94. PubMed ID: 16120447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The serine/threonine/tyrosine phosphoproteome of the model bacterium Bacillus subtilis.
    Macek B; Mijakovic I; Olsen JV; Gnad F; Kumar C; Jensen PR; Mann M
    Mol Cell Proteomics; 2007 Apr; 6(4):697-707. PubMed ID: 17218307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual infection system identifies a crucial role for PKA-mediated serine phosphorylation of the EPEC-Tir-injected effector protein in regulating Rac1 function.
    Brandt S; Kenny B; Rohde M; Martinez-Quiles N; Backert S
    Cell Microbiol; 2009 Aug; 11(8):1254-71. PubMed ID: 19438518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ser/Thr/Tyr phosphoproteome analysis of pathogenic and non-pathogenic Pseudomonas species.
    Ravichandran A; Sugiyama N; Tomita M; Swarup S; Ishihama Y
    Proteomics; 2009 May; 9(10):2764-75. PubMed ID: 19405024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology.
    Grangeasse C; Cozzone AJ; Deutscher J; Mijakovic I
    Trends Biochem Sci; 2007 Feb; 32(2):86-94. PubMed ID: 17208443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosine-kinases in bacteria: from a matter of controversy to the status of key regulatory enzymes.
    Bechet E; Guiral S; Torres S; Mijakovic I; Cozzone AJ; Grangeasse C
    Amino Acids; 2009 Sep; 37(3):499-507. PubMed ID: 19189200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pETPhos: a customized expression vector designed for further characterization of Ser/Thr/Tyr protein kinases and their substrates.
    Canova MJ; Kremer L; Molle V
    Plasmid; 2008 Sep; 60(2):149-53. PubMed ID: 18597845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A eukaryotic-type serine/threonine protein kinase StkP of Streptococcus pneumoniae acts as a dimer in vivo.
    Pallová P; Hercík K; Sasková L; Nováková L; Branny P
    Biochem Biophys Res Commun; 2007 Apr; 355(2):526-30. PubMed ID: 17307148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.