BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 19053221)

  • 1. Bioavailability of [2-(14)C]quercetin-4'-glucoside in rats.
    Mullen W; Rouanet JM; Auger C; Teissèdre PL; Caldwell ST; Hartley RC; Lean ME; Edwards CA; Crozier A
    J Agric Food Chem; 2008 Dec; 56(24):12127-37. PubMed ID: 19053221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disposition and metabolism of [2-14C]quercetin-4'-glucoside in rats.
    Graf BA; Mullen W; Caldwell ST; Hartley RC; Duthie GG; Lean ME; Crozier A; Edwards CA
    Drug Metab Dispos; 2005 Jul; 33(7):1036-43. PubMed ID: 15833931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption, disposition, metabolism, and excretion of [3-(14)C]caffeic acid in rats.
    Omar MH; Mullen W; Stalmach A; Auger C; Rouanet JM; Teissedre PL; Caldwell ST; Hartley RC; Crozier A
    J Agric Food Chem; 2012 May; 60(20):5205-14. PubMed ID: 22480330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of flavonol metabolites in plasma and tissues of rats by HPLC-radiocounting and tandem mass spectrometry following oral ingestion of [2-(14)C]quercetin-4'-glucoside.
    Mullen W; Graf BA; Caldwell ST; Hartley RC; Duthie GG; Edwards CA; Lean ME; Crozier A
    J Agric Food Chem; 2002 Nov; 50(23):6902-9. PubMed ID: 12405795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disposition of 14C-alpha-cyclodextrin in germ-free and conventional rats.
    Van Ommen B; De Bie AT; Bär A
    Regul Toxicol Pharmacol; 2004 Jun; 39 Suppl 1():57-66. PubMed ID: 15265616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disposition of [14C]gamma-cyclodextrin in germ-free and conventional rats.
    De Bie AT; Van Ommen B; Bär A
    Regul Toxicol Pharmacol; 1998 Apr; 27(2):150-8. PubMed ID: 9671569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The bioavailability of raspberry anthocyanins and ellagitannins in rats.
    Borges G; Roowi S; Rouanet JM; Duthie GG; Lean ME; Crozier A
    Mol Nutr Food Res; 2007 Jun; 51(6):714-25. PubMed ID: 17533654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral bioavailability of quercetin from different quercetin glycosides in dogs.
    Reinboth M; Wolffram S; Abraham G; Ungemach FR; Cermak R
    Br J Nutr; 2010 Jul; 104(2):198-203. PubMed ID: 20230651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nondigestible saccharides suppress the bacterial degradation of quercetin aglycone in the large intestine and enhance the bioavailability of quercetin glucoside in rats.
    Matsukawa N; Matsumoto M; Shinoki A; Hagio M; Inoue R; Hara H
    J Agric Food Chem; 2009 Oct; 57(20):9462-8. PubMed ID: 19807098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ingested delphinidin-3-rutinoside is primarily excreted to urine as the intact form and to bile as the methylated form in rats.
    Matsumoto H; Ichiyanagi T; Iida H; Ito K; Tsuda T; Hirayama M; Konishi T
    J Agric Food Chem; 2006 Jan; 54(2):578-82. PubMed ID: 16417324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice.
    Cerdá B; Llorach R; Cerón JJ; Espín JC; Tomás-Barberán FA
    Eur J Nutr; 2003 Jan; 42(1):18-28. PubMed ID: 12594538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions.
    Mullen W; Edwards CA; Crozier A
    Br J Nutr; 2006 Jul; 96(1):107-16. PubMed ID: 16869998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the flavonol quercetin on the bioavailability of simvastatin in pigs.
    Cermak R; Wein S; Wolffram S; Langguth P
    Eur J Pharm Sci; 2009 Dec; 38(5):519-24. PubMed ID: 19804821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorption, metabolism, and excretion of cider dihydrochalcones in healthy humans and subjects with an ileostomy.
    Marks SC; Mullen W; Borges G; Crozier A
    J Agric Food Chem; 2009 Mar; 57(5):2009-15. PubMed ID: 19199586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue distribution and elimination of N-methyl-N-2,4,6-tetranitroaniline (tetryl) in rats.
    Myers SR; Spinnato JA
    Arch Toxicol; 2007 Dec; 81(12):841-8. PubMed ID: 17680234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic fate of [14C] quercetin in the ACI rat.
    Ueno I; Nakano N; Hirono I
    Jpn J Exp Med; 1983 Feb; 53(1):41-50. PubMed ID: 6876476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by Fluorescence in situ hybridization (FISH).
    Hein EM; Rose K; van't Slot G; Friedrich AW; Humpf HU
    J Agric Food Chem; 2008 Mar; 56(6):2281-90. PubMed ID: 18303842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation of flavonoids by intestinal microorganisms.
    Blaut M; Schoefer L; Braune A
    Int J Vitam Nutr Res; 2003 Mar; 73(2):79-87. PubMed ID: 12747214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicokinetics of 14C-endosulfan in male Sprague-Dawley rats following oral administration of single or repeated doses.
    Chan MP; Morisawa S; Nakayama A; Kawamoto Y; Sugimoto M; Yoneda M
    Environ Toxicol; 2005 Oct; 20(5):533-41. PubMed ID: 16161119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid.
    Baba S; Osakabe N; Natsume M; Terao J
    Life Sci; 2004 May; 75(2):165-78. PubMed ID: 15120569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.