These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 19053230)
1. Regulation of the cardiac muscle ryanodine receptor by O(2) tension and S-nitrosoglutathione. Sun J; Yamaguchi N; Xu L; Eu JP; Stamler JS; Meissner G Biochemistry; 2008 Dec; 47(52):13985-90. PubMed ID: 19053230 [TBL] [Abstract][Full Text] [Related]
2. Nitric oxide, NOC-12, and S-nitrosoglutathione modulate the skeletal muscle calcium release channel/ryanodine receptor by different mechanisms. An allosteric function for O2 in S-nitrosylation of the channel. Sun J; Xu L; Eu JP; Stamler JS; Meissner G J Biol Chem; 2003 Mar; 278(10):8184-9. PubMed ID: 12509428 [TBL] [Abstract][Full Text] [Related]
3. Nitroxyl triggers Ca2+ release from skeletal and cardiac sarcoplasmic reticulum by oxidizing ryanodine receptors. Cheong E; Tumbev V; Abramson J; Salama G; Stoyanovsky DA Cell Calcium; 2005 Jan; 37(1):87-96. PubMed ID: 15541467 [TBL] [Abstract][Full Text] [Related]
4. Differential Ca(2+) sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Fruen BR; Bardy JM; Byrem TM; Strasburg GM; Louis CF Am J Physiol Cell Physiol; 2000 Sep; 279(3):C724-33. PubMed ID: 10942723 [TBL] [Abstract][Full Text] [Related]
5. Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor/Ca2+ release channel (RyR1): sites and nature of oxidative modification. Sun QA; Wang B; Miyagi M; Hess DT; Stamler JS J Biol Chem; 2013 Aug; 288(32):22961-71. PubMed ID: 23798702 [TBL] [Abstract][Full Text] [Related]
6. Effects of pO2 on the activation of skeletal muscle ryanodine receptors by NO: a cautionary note. Cheong E; Tumbev V; Stoyanovsky D; Salama G Cell Calcium; 2005 Nov; 38(5):481-8. PubMed ID: 16099502 [TBL] [Abstract][Full Text] [Related]
7. Simvastatin activates single skeletal RyR1 channels but exerts more complex regulation of the cardiac RyR2 isoform. Venturi E; Lindsay C; Lotteau S; Yang Z; Steer E; Witschas K; Wilson AD; Wickens JR; Russell AJ; Steele D; Calaghan S; Sitsapesan R Br J Pharmacol; 2018 Mar; 175(6):938-952. PubMed ID: 29278865 [TBL] [Abstract][Full Text] [Related]
8. Halothane modulation of skeletal muscle ryanodine receptors: dependence on Ca2+, Mg2+, and ATP. Diaz-Sylvester PL; Porta M; Copello JA Am J Physiol Cell Physiol; 2008 Apr; 294(4):C1103-12. PubMed ID: 18305228 [TBL] [Abstract][Full Text] [Related]
9. Redox regulation of calcium release in skeletal and cardiac muscle. Hidalgo C; Aracena P; Sanchez G; Donoso P Biol Res; 2002; 35(2):183-93. PubMed ID: 12415735 [TBL] [Abstract][Full Text] [Related]
10. Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel by NADPH oxidase 4. Sun QA; Hess DT; Nogueira L; Yong S; Bowles DE; Eu J; Laurita KR; Meissner G; Stamler JS Proc Natl Acad Sci U S A; 2011 Sep; 108(38):16098-103. PubMed ID: 21896730 [TBL] [Abstract][Full Text] [Related]
12. Ca(2+) inactivation sites are located in the COOH-terminal quarter of recombinant rabbit skeletal muscle Ca(2+) release channels (ryanodine receptors). Du GG; MacLennan DH J Biol Chem; 1999 Sep; 274(37):26120-6. PubMed ID: 10473562 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamics of calmodulin binding to cardiac and skeletal muscle ryanodine receptor ion channels. Meissner G; Pasek DA; Yamaguchi N; Ramachandran S; Dokholyan NV; Tripathy A Proteins; 2009 Jan; 74(1):207-11. PubMed ID: 18618700 [TBL] [Abstract][Full Text] [Related]
14. Regulation of the skeletal muscle ryanodine receptor/Ca2+-release channel RyR1 by S-palmitoylation. Chaube R; Hess DT; Wang YJ; Plummer B; Sun QA; Laurita K; Stamler JS J Biol Chem; 2014 Mar; 289(12):8612-9. PubMed ID: 24509862 [TBL] [Abstract][Full Text] [Related]
15. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Sun J; Xin C; Eu JP; Stamler JS; Meissner G Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11158-62. PubMed ID: 11562475 [TBL] [Abstract][Full Text] [Related]
16. Physiological role for S-nitrosylation of RyR1 in skeletal muscle function and development. Sun QA; Grimmett ZW; Hess DT; Perez LG; Qian Z; Chaube R; Venetos NM; Plummer BN; Laurita KR; Premont RT; Stamler JS Biochem Biophys Res Commun; 2024 Sep; 723():150163. PubMed ID: 38820626 [TBL] [Abstract][Full Text] [Related]
17. Regulation of the RYR1 and RYR2 Ca2+ release channel isoforms by Ca2+-insensitive mutants of calmodulin. Fruen BR; Black DJ; Bloomquist RA; Bardy JM; Johnson JD; Louis CF; Balog EM Biochemistry; 2003 Mar; 42(9):2740-7. PubMed ID: 12614169 [TBL] [Abstract][Full Text] [Related]
18. Dantrolene inhibition of ryanodine receptor Ca2+ release channels. Molecular mechanism and isoform selectivity. Zhao F; Li P; Chen SR; Louis CF; Fruen BR J Biol Chem; 2001 Apr; 276(17):13810-6. PubMed ID: 11278295 [TBL] [Abstract][Full Text] [Related]
19. Classes of thiols that influence the activity of the skeletal muscle calcium release channel. Sun J; Xu L; Eu JP; Stamler JS; Meissner G J Biol Chem; 2001 May; 276(19):15625-30. PubMed ID: 11278999 [TBL] [Abstract][Full Text] [Related]
20. A central core disease mutation in the Ca Chirasani VR; Xu L; Addis HG; Pasek DA; Dokholyan NV; Meissner G; Yamaguchi N Am J Physiol Cell Physiol; 2019 Aug; 317(2):C358-C365. PubMed ID: 31166712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]