These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 19053369)

  • 1. Comparative analysis of quercetin oxidation by electrochemical, enzymatic, autoxidation, and free radical generation techniques: a mechanistic study.
    Zhou A; Sadik OA
    J Agric Food Chem; 2008 Dec; 56(24):12081-91. PubMed ID: 19053369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation products of quercetin catalyzed by mushroom tyrosinase.
    Kubo I; Nihei K; Shimizu K
    Bioorg Med Chem; 2004 Oct; 12(20):5343-7. PubMed ID: 15388161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative modification of quercetin by hemeproteins.
    Cherviakovsky EM; Bolibrukh DA; Baranovsky AV; Vlasova TM; Kurchenko VP; Gilep AA; Usanov SA
    Biochem Biophys Res Commun; 2006 Apr; 342(2):459-64. PubMed ID: 16487485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic study of the oxidation of quercetin by mushroom tyrosinase.
    Fenoll LG; García-Ruiz PA; Varón R; García-Cánovas F
    J Agric Food Chem; 2003 Dec; 51(26):7781-7. PubMed ID: 14664545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of quercetin with iron and copper ions: complexation and autoxidation.
    El Hajji H; Nkhili E; Tomao V; Dangles O
    Free Radic Res; 2006 Mar; 40(3):303-20. PubMed ID: 16484047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Flavonoid oxidation kinetics in aqueous and aqueous organic media in the presence of peroxidase, tyrosynase, and hemoglobin].
    Barsukova ME; Tokareva AI; Buslova TS; Malinina LI; Veselova IA; Shekhovtsova TN
    Prikl Biokhim Mikrobiol; 2017; 53(2):146-54. PubMed ID: 29508971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of transient covalent protein and DNA adducts by quercetin in cells with and without oxidative enzyme activity.
    van der Woude H; Alink GM; van Rossum BE; Walle K; van Steeg H; Walle T; Rietjens IM
    Chem Res Toxicol; 2005 Dec; 18(12):1907-16. PubMed ID: 16359181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quenching of quercetin quinone/quinone methides by different thiolate scavengers: stability and reversibility of conjugate formation.
    Awad HM; Boersma MG; Boeren S; Van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2003 Jul; 16(7):822-31. PubMed ID: 12870884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assay for pro-oxidant reactivity based on phenoxyl radicals generated by laccase.
    Moţ AC; Coman C; Miron C; Damian G; Sarbu C; Silaghi-Dumitrescu R
    Food Chem; 2014 Jan; 143():214-22. PubMed ID: 24054233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ellagic acid: characterization as substrate of polyphenol oxidase.
    Muñoz-Muñoz JL; Garcia-Molina F; Garcia-Molina M; Tudela J; García-Cánovas F; Rodriguez-Lopez JN
    IUBMB Life; 2009 Feb; 61(2):171-7. PubMed ID: 18925653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insight into solvent effects on the formal HOO. + HOO. reaction.
    Foti MC; Sortino S; Ingold KU
    Chemistry; 2005 Mar; 11(6):1942-8. PubMed ID: 15685709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. o-Quinone involvement in the prooxidant tendency of a mixture of quercetin and caffeic acid.
    Chedea VS; Choueiri L; Jisaka M; Kefalas P
    Food Chem; 2012 Dec; 135(3):1999-2004. PubMed ID: 22953950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of a new quinone methide intermediate during the oxidative transformation of 3,4-dihydroxyphenylacetic acids: implication for eumelanin biosynthesis.
    Sugumaran M; Duggaraju P; Jayachandran E; Kirk KL
    Arch Biochem Biophys; 1999 Nov; 371(1):98-106. PubMed ID: 10525294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosinase catalyzes asymmetric sulfoxidation.
    Pievo R; Gullotti M; Monzani E; Casella L
    Biochemistry; 2008 Mar; 47(11):3493-8. PubMed ID: 18293936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic and computational study of the major oxidation products formed during the reaction of two quercetin conformers with a free radical.
    Mendoza-Wilson AM; Santacruz-Ortega H; Balandrán-Quintana RR
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):481-8. PubMed ID: 21767979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action mechanism of tyrosinase on meta- and para-hydroxylated monophenols.
    Fenoll LG; Rodríguez-López JN; Varón R; García-Ruiz PA; García-Cánovas F; Tudela J
    Biol Chem; 2000 Apr; 381(4):313-20. PubMed ID: 10839460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenolic substrates and suicide inactivation of tyrosinase: kinetics and mechanism.
    Muñoz-Muñoz JL; García-Molina F; García-Ruiz PA; Molina-Alarcón M; Tudela J; García-Cánovas F; Rodríguez-López JN
    Biochem J; 2008 Dec; 416(3):431-40. PubMed ID: 18647136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method to determine quercetin by enhanced luminol electrogenerated chemiluminescence (ECL) and quercetin autoxidation.
    Lei R; Xu X; Yu F; Li N; Liu HW; Li K
    Talanta; 2008 May; 75(4):1068-74. PubMed ID: 18585185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative metabolism of combretastatin A-1 produces quinone intermediates with the potential to bind to nucleophiles and to enhance oxidative stress via free radicals.
    Folkes LK; Christlieb M; Madej E; Stratford MR; Wardman P
    Chem Res Toxicol; 2007 Dec; 20(12):1885-94. PubMed ID: 17941699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavonoid oxidation by the radical generator AIBN: a unified mechanism for quercetin radical scavenging.
    Krishnamachari V; Levine LH; Paré PW
    J Agric Food Chem; 2002 Jul; 50(15):4357-63. PubMed ID: 12105970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.