BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19053426)

  • 1. Nucleobase-directed amyloid nanotube assembly.
    Liu P; Ni R; Mehta AK; Childers WS; Lakdawala A; Pingali SV; Thiyagarajan P; Lynn DG
    J Am Chem Soc; 2008 Dec; 130(50):16867-9. PubMed ID: 19053426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting amyloid fibril lamination for nanotube self-assembly.
    Lu K; Jacob J; Thiyagarajan P; Conticello VP; Lynn DG
    J Am Chem Soc; 2003 May; 125(21):6391-3. PubMed ID: 12785778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of Peptide nanotubes in an organic solvent.
    Krysmann MJ; Castelletto V; McKendrick JE; Clifton LA; W Hamley I; Harris PJ; King SM
    Langmuir; 2008 Aug; 24(15):8158-62. PubMed ID: 18572891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-strand pairing and amyloid assembly.
    Liang Y; Pingali SV; Jogalekar AS; Snyder JP; Thiyagarajan P; Lynn DG
    Biochemistry; 2008 Sep; 47(38):10018-26. PubMed ID: 18759497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher-order molecular packing in amyloid-like fibrils constructed with linear arrangements of hydrophobic and hydrogen-bonding side-chains.
    Saiki M; Honda S; Kawasaki K; Zhou D; Kaito A; Konakahara T; Morii H
    J Mol Biol; 2005 May; 348(4):983-98. PubMed ID: 15843028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly in aqueous solution of a modified amyloid beta peptide fragment.
    Castelletto V; Hamley IW; Harris PJ
    Biophys Chem; 2008 Nov; 138(1-2):29-35. PubMed ID: 18818009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facial symmetry in protein self-assembly.
    Mehta AK; Lu K; Childers WS; Liang Y; Dublin SN; Dong J; Snyder JP; Pingali SV; Thiyagarajan P; Lynn DG
    J Am Chem Soc; 2008 Jul; 130(30):9829-35. PubMed ID: 18593163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramolecular charge interactions as a tool to control the coiled-coil-to-amyloid transformation.
    Pagel K; Wagner SC; Rezaei Araghi R; von Berlepsch H; Böttcher C; Koksch B
    Chemistry; 2008; 14(36):11442-51. PubMed ID: 19016556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the solvent on the self-assembly of a modified amyloid beta peptide fragment. I. Morphological investigation.
    Castelletto V; Hamley IW; Harris PJ; Olsson U; Spencer N
    J Phys Chem B; 2009 Jul; 113(29):9978-87. PubMed ID: 19555054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of amyloid-like fibrillogenesis through beta-sheet-mediated self-assembly of short synthetic peptides.
    Dutt A; Spencer EC; Howard JA; Pramanik A
    Chem Biodivers; 2010 Feb; 7(2):363-75. PubMed ID: 20151383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double assembly composed of lectin association with columnar molecular assembly of cyclic tri-beta-peptide having sugar units.
    Fujimura F; Horikawa Y; Morita T; Sugiyama J; Kimura S
    Biomacromolecules; 2007 Feb; 8(2):611-6. PubMed ID: 17291084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide nanotube nematic phase.
    Bucak S; Cenker C; Nasir I; Olsson U; Zackrisson M
    Langmuir; 2009 Apr; 25(8):4262-5. PubMed ID: 19275132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of amylin(20-29) amide-bond derivatives into helical ribbons and peptide nanotubes rather than fibrils.
    Elgersma RC; Meijneke T; Posthuma G; Rijkers DT; Liskamp RM
    Chemistry; 2006 May; 12(14):3714-25. PubMed ID: 16528792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the mechanism of nanotube formation by chiral self-assembly of amphiphiles.
    Ziserman L; Lee HY; Raghavan SR; Mor A; Danino D
    J Am Chem Soc; 2011 Mar; 133(8):2511-7. PubMed ID: 21244023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation of the conductivity of peptide nanotube networks prepared by enzyme-triggered self-assembly.
    Xu H; Das AK; Horie M; Shaik MS; Smith AM; Luo Y; Lu X; Collins R; Liem SY; Song A; Popelier PL; Turner ML; Xiao P; Kinloch IA; Ulijn RV
    Nanoscale; 2010 Jun; 2(6):960-6. PubMed ID: 20648293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of amyloid fibrils of hen egg white lysozyme studied by microbeam X-ray diffraction.
    Yagi N; Ohta N; Matsuo T
    Int J Biol Macromol; 2009 Jul; 45(1):86-90. PubMed ID: 19397922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly and hydrogelation of an amyloid peptide fragment.
    Krysmann MJ; Castelletto V; Kelarakis A; Hamley IW; Hule RA; Pochan DJ
    Biochemistry; 2008 Apr; 47(16):4597-605. PubMed ID: 18370402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrils and nanotubes assembled from a modified amyloid-β peptide fragment differ in the packing of the same β-sheet building blocks.
    Madine J; Davies HA; Shaw C; Hamley IW; Middleton DA
    Chem Commun (Camb); 2012 Mar; 48(24):2976-8. PubMed ID: 22328992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. beta-Sheet mediated self-assembly of dipeptides of omega-amino acids and remarkable fibrillation in the solid state.
    Dutt A; Drew MG; Pramanik A
    Org Biomol Chem; 2005 Jun; 3(12):2250-4. PubMed ID: 16010358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New model for crystalline polyglutamine assemblies and their connection with amyloid fibrils.
    Sikorski P; Atkins E
    Biomacromolecules; 2005; 6(1):425-32. PubMed ID: 15638548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.