These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 19053469)
1. Structural and dynamic characterization of intrinsically disordered human securin by NMR spectroscopy. Csizmok V; Felli IC; Tompa P; Banci L; Bertini I J Am Chem Soc; 2008 Dec; 130(50):16873-9. PubMed ID: 19053469 [TBL] [Abstract][Full Text] [Related]
2. Domain structure of separase and its binding to securin as determined by EM. Viadiu H; Stemmann O; Kirschner MW; Walz T Nat Struct Mol Biol; 2005 Jun; 12(6):552-3. PubMed ID: 15880121 [TBL] [Abstract][Full Text] [Related]
3. H-start for exclusively heteronuclear NMR spectroscopy: the case of intrinsically disordered proteins. Bermel W; Bertini I; Csizmok V; Felli IC; Pierattelli R; Tompa P J Magn Reson; 2009 Jun; 198(2):275-81. PubMed ID: 19307141 [TBL] [Abstract][Full Text] [Related]
4. Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts. Jensen MR; Salmon L; Nodet G; Blackledge M J Am Chem Soc; 2010 Feb; 132(4):1270-2. PubMed ID: 20063887 [TBL] [Abstract][Full Text] [Related]
5. Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings. Jensen MR; Markwick PR; Meier S; Griesinger C; Zweckstetter M; Grzesiek S; Bernadó P; Blackledge M Structure; 2009 Sep; 17(9):1169-85. PubMed ID: 19748338 [TBL] [Abstract][Full Text] [Related]
6. Separase, securin and Rad21 in neural cell growth. Pemberton HN; Franklyn JA; Boelaert K; Chan SY; Kim DS; Kim C; Cheng SY; Kilby MD; McCabe CJ J Cell Physiol; 2007 Oct; 213(1):45-53. PubMed ID: 17450531 [TBL] [Abstract][Full Text] [Related]
7. Critical differences between isoforms of securin reveal mechanisms of separase regulation. Han X; Poon RY Mol Cell Biol; 2013 Sep; 33(17):3400-15. PubMed ID: 23798554 [TBL] [Abstract][Full Text] [Related]
8. Use of protonless NMR spectroscopy to alleviate the loss of information resulting from exchange-broadening. Hsu ST; Bertoncini CW; Dobson CM J Am Chem Soc; 2009 Jun; 131(21):7222-3. PubMed ID: 19432443 [TBL] [Abstract][Full Text] [Related]
9. Measurement and analysis of NMR residual dipolar couplings for the study of intrinsically disordered proteins. Salmon L; Jensen MR; Bernadó P; Blackledge M Methods Mol Biol; 2012; 895():115-25. PubMed ID: 22760316 [TBL] [Abstract][Full Text] [Related]
10. Paramagnetic ions enable tuning of nuclear relaxation rates and provide long-range structural restraints in solid-state NMR of proteins. Nadaud PS; Helmus JJ; Kall SL; Jaroniec CP J Am Chem Soc; 2009 Jun; 131(23):8108-20. PubMed ID: 19445506 [TBL] [Abstract][Full Text] [Related]
11. Incorporating 1H chemical shift determination into 13C-direct detected spectroscopy of intrinsically disordered proteins in solution. O'Hare B; Benesi AJ; Showalter SA J Magn Reson; 2009 Oct; 200(2):354-8. PubMed ID: 19648037 [TBL] [Abstract][Full Text] [Related]
12. Quantifying two-bond 1HN-13CO and one-bond 1H(alpha)-13C(alpha) dipolar couplings of invisible protein states by spin-state selective relaxation dispersion NMR spectroscopy. Hansen DF; Vallurupalli P; Kay LE J Am Chem Soc; 2008 Jul; 130(26):8397-405. PubMed ID: 18528998 [TBL] [Abstract][Full Text] [Related]
13. Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments. Chevelkov V; Fink U; Reif B J Am Chem Soc; 2009 Oct; 131(39):14018-22. PubMed ID: 19743845 [TBL] [Abstract][Full Text] [Related]
14. Structure and disorder in an unfolded state under nondenaturing conditions from ensemble models consistent with a large number of experimental restraints. Marsh JA; Forman-Kay JD J Mol Biol; 2009 Aug; 391(2):359-74. PubMed ID: 19501099 [TBL] [Abstract][Full Text] [Related]
15. Longitudinal relaxation properties of (1)H(N) and (1)H(α) determined by direct-detected (13)C NMR experiments to study intrinsically disordered proteins (IDPs). Hošek T; Gil-Caballero S; Pierattelli R; Brutscher B; Felli IC J Magn Reson; 2015 May; 254():19-26. PubMed ID: 25771525 [TBL] [Abstract][Full Text] [Related]
16. Structure and dynamics of the N-terminal half of hepatitis C virus core protein: an intrinsically unstructured protein. Duvignaud JB; Savard C; Fromentin R; Majeau N; Leclerc D; Gagné SM Biochem Biophys Res Commun; 2009 Jan; 378(1):27-31. PubMed ID: 18992225 [TBL] [Abstract][Full Text] [Related]
17. Securin and not CDK1/cyclin B1 regulates sister chromatid disjunction during meiosis II in mouse eggs. Nabti I; Reis A; Levasseur M; Stemmann O; Jones KT Dev Biol; 2008 Sep; 321(2):379-86. PubMed ID: 18639540 [TBL] [Abstract][Full Text] [Related]
18. Automated NMR assignment of protein side chain resonances using automated projection spectroscopy (APSY). Hiller S; Joss R; Wider G J Am Chem Soc; 2008 Sep; 130(36):12073-9. PubMed ID: 18710239 [TBL] [Abstract][Full Text] [Related]
19. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy. Kjaergaard M; Poulsen FM; Kragelund BB Methods Mol Biol; 2012; 896():233-47. PubMed ID: 22821528 [TBL] [Abstract][Full Text] [Related]
20. Mapping the potential energy landscape of intrinsically disordered proteins at amino acid resolution. Ozenne V; Schneider R; Yao M; Huang JR; Salmon L; Zweckstetter M; Jensen MR; Blackledge M J Am Chem Soc; 2012 Sep; 134(36):15138-48. PubMed ID: 22901047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]