These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 19053521)

  • 1. Eliciting possible reaction equations and metabolic pathways involving orphan metabolites.
    Kotera M; McDonald AG; Boyce S; Tipton KF
    J Chem Inf Model; 2008 Dec; 48(12):2335-49. PubMed ID: 19053521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational assignment of the EC numbers for genomic-scale analysis of enzymatic reactions.
    Kotera M; Okuno Y; Hattori M; Goto S; Kanehisa M
    J Am Chem Soc; 2004 Dec; 126(50):16487-98. PubMed ID: 15600352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways.
    Oh M; Yamada T; Hattori M; Goto S; Kanehisa M
    J Chem Inf Model; 2007; 47(4):1702-12. PubMed ID: 17516640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting substrates by docking high-energy intermediates to enzyme structures.
    Hermann JC; Ghanem E; Li Y; Raushel FM; Irwin JJ; Shoichet BK
    J Am Chem Soc; 2006 Dec; 128(49):15882-91. PubMed ID: 17147401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic pathfinding using RPAIR annotation.
    Faust K; Croes D; van Helden J
    J Mol Biol; 2009 May; 388(2):390-414. PubMed ID: 19281817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ORENZA: a web resource for studying ORphan ENZyme activities.
    Lespinet O; Labedan B
    BMC Bioinformatics; 2006 Oct; 7():436. PubMed ID: 17026747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of kinetic parameters of enzyme-catalyzed reactions with a minimum number of velocity measurements.
    Alberty RA
    J Theor Biol; 2008 Sep; 254(1):156-63. PubMed ID: 18582902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-fate maps for metabolic reactions.
    Mu F; Williams RF; Unkefer CJ; Unkefer PJ; Faeder JR; Hlavacek WS
    Bioinformatics; 2007 Dec; 23(23):3193-9. PubMed ID: 17933853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic determination of reaction mappings and reaction center information. 1. The imaginary transition state energy approach.
    Körner R; Apostolakis J
    J Chem Inf Model; 2008 Jun; 48(6):1181-9. PubMed ID: 18533713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of common substructures of metabolic compounds within the different organism groups.
    Muto A; Hattori M; Kanehisa M
    Genome Inform; 2007; 18():299-307. PubMed ID: 18546497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of plant-derived flavor compounds.
    Schwab W; Davidovich-Rikanati R; Lewinsohn E
    Plant J; 2008 May; 54(4):712-32. PubMed ID: 18476874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved algorithms for enumerating tree-like chemical graphs with given path frequency.
    Ishida Y; Zhao L; Nagamochi H; Akutsu T
    Genome Inform; 2008; 21():53-64. PubMed ID: 19425147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale classification of metabolic reactions and assignment of EC numbers with self-organizing maps.
    Latino DA; Zhang QY; Aires-de-Sousa J
    Bioinformatics; 2008 Oct; 24(19):2236-44. PubMed ID: 18676416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Enzyme Genes Using Chemical Structure Alignments of Substrate-Product Pairs.
    Moriya Y; Yamada T; Okuda S; Nakagawa Z; Kotera M; Tokimatsu T; Kanehisa M; Goto S
    J Chem Inf Model; 2016 Mar; 56(3):510-6. PubMed ID: 26822930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BioSM: metabolomics tool for identifying endogenous mammalian biochemical structures in chemical structure space.
    Hamdalla MA; Mandoiu II; Hill DW; Rajasekaran S; Grant DF
    J Chem Inf Model; 2013 Mar; 53(3):601-12. PubMed ID: 23330685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coarse graining of master equations with fast and slow states.
    Pigolotti S; Vulpiani A
    J Chem Phys; 2008 Apr; 128(15):154114. PubMed ID: 18433197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A probabilistic approach to compact steady-state kinetic equations for enzymic reactions.
    Malygin EG; Hattman S
    J Theor Biol; 2006 Oct; 242(3):627-33. PubMed ID: 16697416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient enzyme kinetics: graph-theoretic approach.
    Goldstein BN
    Biophys Chem; 2009 May; 141(2-3):193-7. PubMed ID: 19233540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A moment closure method for stochastic reaction networks.
    Lee CH; Kim KH; Kim P
    J Chem Phys; 2009 Apr; 130(13):134107. PubMed ID: 19355717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized reaction patterns for prediction of unknown enzymatic reactions.
    Shimizu Y; Hattori M; Goto S; Kanehisa M
    Genome Inform; 2008; 20():149-58. PubMed ID: 19425130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.