These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19053631)

  • 1. Centrifugal length separation of carbon nanotubes.
    Fagan JA; Becker ML; Chun J; Nie P; Bauer BJ; Simpson JR; Hight-Walker A; Hobbie EK
    Langmuir; 2008 Dec; 24(24):13880-9. PubMed ID: 19053631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailored distribution of single-wall carbon nanotubes from arc plasma synthesis using magnetic fields.
    Volotskova O; Fagan JA; Huh JY; Phelan FR; Shashurin A; Keidar M
    ACS Nano; 2010 Sep; 4(9):5187-92. PubMed ID: 20707323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemometric determination of the length distribution of single walled carbon nanotubes through optical spectroscopy.
    Si R; Wang K; Chen T; Chen Y
    Anal Chim Acta; 2011 Dec; 708(1-2):28-36. PubMed ID: 22093341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules.
    Haggenmueller R; Rahatekar SS; Fagan JA; Chun J; Becker ML; Naik RR; Krauss T; Carlson L; Kadla JF; Trulove PC; Fox DF; Delong HC; Fang Z; Kelley SO; Gilman JW
    Langmuir; 2008 May; 24(9):5070-8. PubMed ID: 18442227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography.
    Huang X; Mclean RS; Zheng M
    Anal Chem; 2005 Oct; 77(19):6225-8. PubMed ID: 16194082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution length fractionation of surfactant-dispersed carbon nanotubes.
    Khripin CY; Tu X; Heddleston JM; Silvera-Batista C; Hight Walker AR; Fagan J; Zheng M
    Anal Chem; 2013 Feb; 85(3):1382-8. PubMed ID: 23259532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced Raman spectroscopy.
    Chu H; Wang J; Ding L; Yuan D; Zhang Y; Liu J; Li Y
    J Am Chem Soc; 2009 Oct; 131(40):14310-6. PubMed ID: 19764748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of ordered nanowires in biological suspensions of single-wall carbon nanotubes.
    Hobbie EK; Fagan JA; Becker ML; Hudson SD; Fakhri N; Pasquali M
    ACS Nano; 2009 Jan; 3(1):189-96. PubMed ID: 19206266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size separation of single-wall carbon nanotubes by flow-field flow fractionation.
    Chun J; Fagan JA; Hobbie EK; Bauer BJ
    Anal Chem; 2008 Apr; 80(7):2514-23. PubMed ID: 18302346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of surfactant-suspended single-walled carbon nanotubes in a centrifugal field.
    Nair N; Kim WJ; Braatz RD; Strano MS
    Langmuir; 2008 Mar; 24(5):1790-5. PubMed ID: 18211104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain energy and lateral friction force distributions of carbon nanotubes manipulated into shapes by atomic force microscopy.
    Strus MC; Lahiji RR; Ares P; López V; Raman A; Reifenberger R
    Nanotechnology; 2009 Sep; 20(38):385709. PubMed ID: 19713587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of double-walled carbon nanotubes by size exclusion column chromatography.
    Moore KE; Pfohl M; Hennrich F; Chakradhanula VS; Kuebel C; Kappes MM; Shapter JG; Krupke R; Flavel BS
    ACS Nano; 2014 Jul; 8(7):6756-64. PubMed ID: 24896840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution.
    Blanch AJ; Lenehan CE; Quinton JS
    J Phys Chem B; 2010 Aug; 114(30):9805-11. PubMed ID: 20666522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Length-dependent optical effects in single-wall carbon nanotubes.
    Fagan JA; Simpson JR; Bauer BJ; Lacerda SH; Becker ML; Chun J; Migler KB; Walker AR; Hobbie EK
    J Am Chem Soc; 2007 Aug; 129(34):10607-12. PubMed ID: 17672462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductive, capacitive, and viscoelastic properties of a new composite of the C60-pd conducting polymer and single-wall carbon nanotubes.
    Pieta P; Grodzka E; Winkler K; Warczak M; Sadkowski A; Zukowska GZ; Venukadasula GM; D'Souza F; Kutner W
    J Phys Chem B; 2009 May; 113(19):6682-91. PubMed ID: 19361175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The characterization of the concentration of the single-walled carbon nanotubes in aqueous dispersion by UV-Vis-NIR absorption spectroscopy.
    Yang B; Ren L; Li L; Tao X; Shi Y; Zheng Y
    Analyst; 2013 Nov; 138(21):6671-6. PubMed ID: 24000337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arrays.
    Tulevski GS; Hannon J; Afzali A; Chen Z; Avouris P; Kagan CR
    J Am Chem Soc; 2007 Oct; 129(39):11964-8. PubMed ID: 17824611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalization of single-wall carbon nanotubes through chloroform adsorption: theory and experiment.
    Girão EC; Liebold-Ribeiro Y; Batista JA; Barros EB; Fagan SB; Mendes Filho J; Dresselhaus MS; Souza Filho AG
    Phys Chem Chem Phys; 2010 Feb; 12(7):1518-24. PubMed ID: 20126764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractionation of single wall carbon nanotubes by length using cross flow filtration method.
    Ohmori S; Saito T; Shukla B; Yumura M; Iijima S
    ACS Nano; 2010 Jul; 4(7):3606-10. PubMed ID: 20527801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Separation of single-walled carbon nanotubes by 1-dodecanol-mediated size-exclusion chromatography.
    Flavel BS; Kappes MM; Krupke R; Hennrich F
    ACS Nano; 2013 Apr; 7(4):3557-64. PubMed ID: 23540203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.