These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1905381)

  • 1. Predicting the minimal energy costs of human walking.
    Holt KG; Hamill J; Andres RO
    Med Sci Sports Exerc; 1991 Apr; 23(4):491-8. PubMed ID: 1905381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of stride frequency on the energy cost of walking in obese teenagers.
    Delextrat A; Matthew D; Cohen DD; Brisswalter J
    Hum Mov Sci; 2011 Feb; 30(1):115-24. PubMed ID: 21168928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of walking in children.
    Jeng SF; Liao HF; Lai JS; Hou JW
    Med Sci Sports Exerc; 1997 Mar; 29(3):370-6. PubMed ID: 9139176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of stride frequency on metabolic costs and rating of perceived exertion during walking in water.
    Masumoto K; Nishizaki Y; Hamada A
    Gait Posture; 2013 Jun; 38(2):335-9. PubMed ID: 23332190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor-respiratory coupling patterns and oxygen consumption during walking above and below preferred stride frequency.
    O'Halloran J; Hamill J; McDermott WJ; Remelius JG; Van Emmerik RE
    Eur J Appl Physiol; 2012 Mar; 112(3):929-40. PubMed ID: 21701846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of anthropometric parameters and stride frequency on estimation of energy cost of walking.
    Bereket S
    J Sports Med Phys Fitness; 2005 Jun; 45(2):152-61. PubMed ID: 16355075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excess body weight and gait influence energy cost of walking in older adults.
    Laroche DP; Marques NR; Shumila HN; Logan CR; Laurent RS; Gonçalves M
    Med Sci Sports Exerc; 2015 May; 47(5):1017-25. PubMed ID: 25202852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Walking at the preferred stride frequency maximizes local dynamic stability of knee motion.
    Russell DM; Haworth JL
    J Biomech; 2014 Jan; 47(1):102-8. PubMed ID: 24210850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The force-driven harmonic oscillator model for energy-efficient locomotion in individuals with transtibial amputation.
    Lin-Chan SJ; Bilodeau M; Yack HJ; Nielsen DH
    Hum Mov Sci; 2004 Apr; 22(6):611-30. PubMed ID: 15063044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Optimization of Walking in Nondisabled Children and Children With Spastic Hemiplegic Cerebral Palsy.
    Jeng SF; Holt KG; Fetters L; Certo C
    J Mot Behav; 1996 Mar; 28(1):15-27. PubMed ID: 12529220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between smoothness and economy during walking.
    Hreljac A; Martin PE
    Biol Cybern; 1993; 69(3):213-8. PubMed ID: 8373892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait retraining after anterior cruciate ligament reconstruction.
    Decker MJ; Torry MR; Noonan TJ; Sterett WI; Steadman JR
    Arch Phys Med Rehabil; 2004 May; 85(5):848-56. PubMed ID: 15129412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise training modifies walking kinematics and energy cost in obese adolescents: A pilot controlled trial.
    Delextrat A; Matthew D; Brisswalter J
    Eur J Sport Sci; 2015; 15(8):727-35. PubMed ID: 26289810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The energy cost for the step-to-step transition in amputee walking.
    Houdijk H; Pollmann E; Groenewold M; Wiggerts H; Polomski W
    Gait Posture; 2009 Jul; 30(1):35-40. PubMed ID: 19321343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run.
    Hunter I; Smith GA
    Eur J Appl Physiol; 2007 Aug; 100(6):653-61. PubMed ID: 17602239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy cost of walking and gait instability in healthy 65- and 80-yr-olds.
    Malatesta D; Simar D; Dauvilliers Y; Candau R; Borrani F; Prefaut C; Caillaud C
    J Appl Physiol (1985); 2003 Dec; 95(6):2248-56. PubMed ID: 12882986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stride frequency and ventilation at constant carbon dioxide output.
    Berry MJ; Bacharach DW; Moritani T
    Br J Sports Med; 1985 Dec; 19(4):210-3. PubMed ID: 3937560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Walking on a treadmill improves the stride length-cadence relationship in individuals with Parkinson's disease.
    Ambrus M; Sanchez JA; Fernandez-Del-Olmo M
    Gait Posture; 2019 Feb; 68():136-140. PubMed ID: 30476690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of speed on kinematic, kinetic, electromyographic and energetic reference values during treadmill walking.
    Stoquart G; Detrembleur C; Lejeune T
    Neurophysiol Clin; 2008 Apr; 38(2):105-16. PubMed ID: 18423331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.