BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19053817)

  • 1. Effects of casein, ovalbumin, and dextran on the astringency of tea polyphenols determined by quartz crystal microbalance with dissipation.
    Yan Y; Hu J; Yao P
    Langmuir; 2009 Jan; 25(1):397-402. PubMed ID: 19053817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of biopolymeric complex coacervation core micelles for efficient tea polyphenol delivery via a green process.
    Zhou H; Sun X; Zhang L; Zhang P; Li J; Liu YN
    Langmuir; 2012 Oct; 28(41):14553-61. PubMed ID: 23039124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring the binding processes of black tea thearubigin to the bovine serum albumin surface using quartz crystal microbalance with dissipation monitoring.
    Chitpan M; Wang X; Ho CT; Huang Q
    J Agric Food Chem; 2007 Dec; 55(25):10110-6. PubMed ID: 18031008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micellization of casein-graft-dextran copolymer prepared through Maillard reaction.
    Pan X; Mu M; Hu B; Yao P; Jiang M
    Biopolymers; 2006 Jan; 81(1):29-38. PubMed ID: 16167326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyphenol-beta-casein complexes at the air/water interface and in solution: effects of polyphenol structure.
    Aguié-Béghin V; Sausse P; Meudec E; Cheynier V; Douillard R
    J Agric Food Chem; 2008 Oct; 56(20):9600-11. PubMed ID: 18826319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time monitoring of peptic and tryptic digestions of bovine beta-casein using quartz crystal microbalance.
    Huenerbein A; Schmelzer CE; Neubert RH
    Anal Chim Acta; 2007 Feb; 584(1):72-7. PubMed ID: 17386587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel technology to reduce astringency of tea polyphenols extract and its mechanism.
    Wan JY; Long Y; Zhang YL; Xiang Y; Liu SY; Li N; Zhang DK
    Chin Herb Med; 2021 Jul; 13(3):421-429. PubMed ID: 36118929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyphenols, astringency and proline-rich proteins.
    Luck G; Liao H; Murray NJ; Grimmer HR; Warminski EE; Williamson MP; Lilley TH; Haslam E
    Phytochemistry; 1994 Sep; 37(2):357-71. PubMed ID: 7765619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of milk alpha-casein on the antioxidant activity of tea polyphenols.
    Bourassa P; Côté R; Hutchandani S; Samson G; Tajmir-Riahi HA
    J Photochem Photobiol B; 2013 Nov; 128():43-9. PubMed ID: 24001682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protective effects of tea polyphenols against oxidative damage to red blood cells.
    Grinberg LN; Newmark H; Kitrossky N; Rahamim E; Chevion M; Rachmilewitz EA
    Biochem Pharmacol; 1997 Nov; 54(9):973-8. PubMed ID: 9374417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved bioavailability and pharmacokinetics of tea polyphenols by encapsulation into gelatin nanoparticles.
    Kulandaivelu K; Mandal AKA
    IET Nanobiotechnol; 2017 Jun; 11(4):469-476. PubMed ID: 28530198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncovalent cross-linking of casein by epigallocatechin gallate characterized by single molecule force microscopy.
    Jöbstl E; Howse JR; Fairclough JP; Williamson MP
    J Agric Food Chem; 2006 Jun; 54(12):4077-81. PubMed ID: 16756328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical properties of casein-dextran nanoparticles prepared by controlled dry and wet heating.
    Meng J; Kang TT; Wang HF; Zhao BB; Lu RR
    Int J Biol Macromol; 2018 Feb; 107(Pt B):2604-2610. PubMed ID: 29080816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular model for astringency produced by polyphenol/protein interactions.
    Jöbstl E; O'Connell J; Fairclough JP; Williamson MP
    Biomacromolecules; 2004; 5(3):942-9. PubMed ID: 15132685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acidic solution properties of beta-casein-graft-dextran copolymer prepared through Maillard reaction.
    Mu M; Pan X; Yao P; Jiang M
    J Colloid Interface Sci; 2006 Sep; 301(1):98-106. PubMed ID: 16716343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of hydrogen peroxide by polyphenols and polyphenol-rich beverages under quasi-physiological conditions.
    Akagawa M; Shigemitsu T; Suyama K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2632-40. PubMed ID: 14730143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of tea extracts (Camelia sinensis) in jelly candies as polyphenols sources in human diet.
    Gramza-Michalowska A; Regula J
    Asia Pac J Clin Nutr; 2007; 16 Suppl 1():43-6. PubMed ID: 17392075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan/dextran multilayer microcapsules for polyphenol co-delivery.
    Paini M; Aliakbarian B; Casazza AA; Perego P; Ruggiero C; Pastorino L
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():374-80. PubMed ID: 25492000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between tea catechins and casein micelles and their impact on renneting functionality.
    Haratifar S; Corredig M
    Food Chem; 2014 Jan; 143():27-32. PubMed ID: 24054208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of cysteine proteases on protein/pigment film removal.
    Yao JW; Xiao Y; Zuo QL; Zhang Y; Tao T; Lin CJ
    Arch Oral Biol; 2013 Nov; 58(11):1618-26. PubMed ID: 24112727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.