These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 19053824)
1. Effect of surface structure on the sustainability of an air layer on superhydrophobic coatings in a water-ethanol mixture. Sakai M; Yanagisawa T; Nakajima A; Kameshima Y; Okada K Langmuir; 2009 Jan; 25(1):13-6. PubMed ID: 19053824 [TBL] [Abstract][Full Text] [Related]
2. Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infrared region. Zhang L; Li Y; Sun J; Shen J J Colloid Interface Sci; 2008 Mar; 319(1):302-8. PubMed ID: 18068180 [TBL] [Abstract][Full Text] [Related]
3. Superhydrophobic copper tubes with possible flow enhancement and drag reduction. Shirtcliffe NJ; McHale G; Newton MI; Zhang Y ACS Appl Mater Interfaces; 2009 Jun; 1(6):1316-23. PubMed ID: 20355928 [TBL] [Abstract][Full Text] [Related]
4. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153 [TBL] [Abstract][Full Text] [Related]
5. Hierarchical roughness optimization for biomimetic superhydrophobic surfaces. Nosonovsky M; Bhushan B Ultramicroscopy; 2007 Oct; 107(10-11):969-79. PubMed ID: 17570591 [TBL] [Abstract][Full Text] [Related]
6. Highly transparent and durable superhydrophobic hybrid nanoporous coatings fabricated from polysiloxane. Wang D; Zhang Z; Li Y; Xu C ACS Appl Mater Interfaces; 2014 Jul; 6(13):10014-21. PubMed ID: 24955659 [TBL] [Abstract][Full Text] [Related]
7. Underwater sustainability of the "Cassie" state of wetting. Bobji MS; Kumar SV; Asthana A; Govardhan RN Langmuir; 2009 Oct; 25(20):12120-6. PubMed ID: 19821621 [TBL] [Abstract][Full Text] [Related]
8. Hydrophobicity and freezing of a water droplet on fluoroalkylsilane coatings with different roughnesses. Suzuki S; Nakajima A; Yoshida N; Sakai M; Hashimoto A; Kameshima Y; Okada K Langmuir; 2007 Aug; 23(17):8674-7. PubMed ID: 17637012 [TBL] [Abstract][Full Text] [Related]
9. Transferrable superhydrophobic surface constructed by a hexagonal CuI powder without modification by low-free-energy materials. Gao S; Li Z; Yang S; Jiang K; Li Y; Zeng H; Li L; Wang H ACS Appl Mater Interfaces; 2009 Sep; 1(9):2080-5. PubMed ID: 20355836 [TBL] [Abstract][Full Text] [Related]
10. Superhydrophobic CFx coating via in-line atmospheric RF plasma of He-CF4-H2. Kim SH; Kim JH; Kang BK; Uhm HS Langmuir; 2005 Dec; 21(26):12213-7. PubMed ID: 16342994 [TBL] [Abstract][Full Text] [Related]
11. On the mechanism of floating and sliding of liquid marbles. Bormashenko E; Bormashenko Y; Musin A; Barkay Z Chemphyschem; 2009 Mar; 10(4):654-6. PubMed ID: 19177484 [TBL] [Abstract][Full Text] [Related]
12. Transformation of a simple plastic into a superhydrophobic surface. Erbil HY; Demirel AL; Avci Y; Mert O Science; 2003 Feb; 299(5611):1377-80. PubMed ID: 12610300 [TBL] [Abstract][Full Text] [Related]
13. Air entrapment in coatings by way of a tip-streaming meniscus. Simpkins PG; Kuck VJ Nature; 2000 Feb; 403(6770):641-3. PubMed ID: 10688196 [TBL] [Abstract][Full Text] [Related]
14. Facile preparation of superhydrophobic coatings by sol-gel processes. Taurino R; Fabbri E; Messori M; Pilati F; Pospiech D; Synytska A J Colloid Interface Sci; 2008 Sep; 325(1):149-56. PubMed ID: 18571661 [TBL] [Abstract][Full Text] [Related]
15. Double-scale roughness and superhydrophobicity on metalized Toray carbon fiber paper. Bliznakov S; Liu Y; Dimitrov N; Garnica J; Sedev R Langmuir; 2009 Apr; 25(8):4760-6. PubMed ID: 19265409 [TBL] [Abstract][Full Text] [Related]
16. Effect of layer structures of gold nanoparticle films on surface enhanced Raman scattering. Oh MK; Yun S; Kim SK; Park S Anal Chim Acta; 2009 Sep; 649(1):111-6. PubMed ID: 19664470 [TBL] [Abstract][Full Text] [Related]
17. Simple strategy for producing superhydrophobic nanocomposite coatings in situ on a building substrate. Facio DS; Mosquera MJ ACS Appl Mater Interfaces; 2013 Aug; 5(15):7517-26. PubMed ID: 23855260 [TBL] [Abstract][Full Text] [Related]
18. Surface-sensitive reflection-mode EXAFS from layered sample systems: the influence of surface and interface roughness. Keil P; Lützenkirchen-Hecht D J Synchrotron Radiat; 2009 Jul; 16(Pt 4):443-54. PubMed ID: 19535856 [TBL] [Abstract][Full Text] [Related]
19. Transparent superhydrophobic/translucent superamphiphobic coatings based on silica-fluoropolymer hybrid nanoparticles. Lee SG; Ham DS; Lee DY; Bong H; Cho K Langmuir; 2013 Dec; 29(48):15051-7. PubMed ID: 24224524 [TBL] [Abstract][Full Text] [Related]
20. Water structure at the air-aqueous interface of divalent cation and nitrate solutions. Xu M; Spinney R; Allen HC J Phys Chem B; 2009 Apr; 113(13):4102-10. PubMed ID: 19239253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]