BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 19054077)

  • 1. aroA and aroD mutations influence biofilm formation in Salmonella Enteritidis.
    Malcova M; Karasova D; Rychlik I
    FEMS Microbiol Lett; 2009 Feb; 291(1):44-9. PubMed ID: 19054077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis.
    Latasa C; Roux A; Toledo-Arana A; Ghigo JM; Gamazo C; Penadés JR; Lasa I
    Mol Microbiol; 2005 Dec; 58(5):1322-39. PubMed ID: 16313619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of the rugose phenotype in waaG and ddhC mutants of Salmonella enterica serovar Typhimurium DT104 is associated with inverse production of curli and cellulose.
    Anriany Y; Sahu SN; Wessels KR; McCann LM; Joseph SW
    Appl Environ Microbiol; 2006 Jul; 72(7):5002-12. PubMed ID: 16820499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. aro mutations in Salmonella enterica cause defects in cell wall and outer membrane integrity.
    Sebkova A; Karasova D; Crhanova M; Budinska E; Rychlik I
    J Bacteriol; 2008 May; 190(9):3155-60. PubMed ID: 18310348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm formation in field strains of Salmonella enterica serovar Typhimurium: identification of a new colony morphology type and the role of SGI1 in biofilm formation.
    Malcova M; Hradecka H; Karpiskova R; Rychlik I
    Vet Microbiol; 2008 Jun; 129(3-4):360-6. PubMed ID: 18242887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy.
    Jonas K; Tomenius H; Kader A; Normark S; Römling U; Belova LM; Melefors O
    BMC Microbiol; 2007 Jul; 7():70. PubMed ID: 17650335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architectural adaptation and protein expression patterns of Salmonella enterica serovar Enteritidis biofilms under laminar flow conditions.
    Mangalappalli-Illathu AK; Lawrence JR; Swerhone GD; Korber DR
    Int J Food Microbiol; 2008 Mar; 123(1-2):109-20. PubMed ID: 18261816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. gcpA (stm1987) is critical for cellulose production and biofilm formation on polystyrene surface by Salmonella enterica serovar Weltevreden in both high and low nutrient medium.
    Bhowmick PP; Devegowda D; Ruwandeepika HA; Fuchs TM; Srikumar S; Karunasagar I; Karunasagar I
    Microb Pathog; 2011 Feb; 50(2):114-22. PubMed ID: 21147214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dam methylation is required for efficient biofilm production in Salmonella enterica serovar Enteritidis.
    Aya Castañeda Mdel R; Sarnacki SH; Noto Llana M; López Guerra AG; Giacomodonato MN; Cerquetti MC
    Int J Food Microbiol; 2015 Jan; 193():15-22. PubMed ID: 25462918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyses of the red-dry-rough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents.
    Uhlich GA; Cooke PH; Solomon EB
    Appl Environ Microbiol; 2006 Apr; 72(4):2564-72. PubMed ID: 16597958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OmpA influences Escherichia coli biofilm formation by repressing cellulose production through the CpxRA two-component system.
    Ma Q; Wood TK
    Environ Microbiol; 2009 Oct; 11(10):2735-46. PubMed ID: 19601955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose.
    Solano C; García B; Valle J; Berasain C; Ghigo JM; Gamazo C; Lasa I
    Mol Microbiol; 2002 Feb; 43(3):793-808. PubMed ID: 11929533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofilm formation by exopolysaccharide mutants of Leuconostoc mesenteroides strain NRRL B-1355.
    Leathers TD; Côté GL
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):1025-31. PubMed ID: 18301888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of NtrC-regulated exopolysaccharides in the biofilm formation and pathogenic interaction of Vibrio vulnificus.
    Kim HS; Park SJ; Lee KH
    Mol Microbiol; 2009 Oct; 74(2):436-53. PubMed ID: 19737353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of attenuated mutants of Salmonella enterica serovar Enteritidis with porcine peripheral blood leukocytes.
    Stepanova H; Volf J; Malcova M; Matiasovic J; Faldyna M; Rychlik I
    FEMS Microbiol Lett; 2011 Aug; 321(1):37-42. PubMed ID: 21569080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of Salmonella enterica serovar Enteritidis mutants with a vaccine potential.
    Karasova D; Sebkova A; Vrbas V; Havlickova H; Sisak F; Rychlik I
    Vaccine; 2009 Aug; 27(38):5265-70. PubMed ID: 19577637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cells in shearable and nonshearable regions of Salmonella enterica serovar Enteritidis biofilms are morphologically and physiologically distinct.
    Mangalappalli-Illathu AK; Lawrence JR; Korber DR
    Can J Microbiol; 2009 Aug; 55(8):955-66. PubMed ID: 19898535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Identification of genes for biofilm formation in a Salmonella enteritidis strain by transposon mutagenesis].
    Dong H; Zhang X; Pan Z; Peng D; Liu X
    Wei Sheng Wu Xue Bao; 2008 Jul; 48(7):869-73. PubMed ID: 18837362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilm formation in Desulfovibrio vulgaris Hildenborough is dependent upon protein filaments.
    Clark ME; Edelmann RE; Duley ML; Wall JD; Fields MW
    Environ Microbiol; 2007 Nov; 9(11):2844-54. PubMed ID: 17922767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A major protein component of the Bacillus subtilis biofilm matrix.
    Branda SS; Chu F; Kearns DB; Losick R; Kolter R
    Mol Microbiol; 2006 Feb; 59(4):1229-38. PubMed ID: 16430696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.