These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 19054128)

  • 1. Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae.
    Yoshikawa K; Tanaka T; Furusawa C; Nagahisa K; Hirasawa T; Shimizu H
    FEMS Yeast Res; 2009 Feb; 9(1):32-44. PubMed ID: 19054128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis.
    Hirasawa T; Yoshikawa K; Nakakura Y; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    J Biotechnol; 2007 Aug; 131(1):34-44. PubMed ID: 17604866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae.
    Auesukaree C; Damnernsawad A; Kruatrachue M; Pokethitiyook P; Boonchird C; Kaneko Y; Harashima S
    J Appl Genet; 2009; 50(3):301-10. PubMed ID: 19638689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive phenotypic analysis of single-gene deletion and overexpression strains of Saccharomyces cerevisiae.
    Yoshikawa K; Tanaka T; Ida Y; Furusawa C; Hirasawa T; Shimizu H
    Yeast; 2011 May; 28(5):349-61. PubMed ID: 21341307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent Mechanisms for Acquired Salt Tolerance versus Growth Resumption Induced by Mild Ethanol Pretreatment in
    McDaniel EA; Stuecker TN; Veluvolu M; Gasch AP; Lewis JA
    mSphere; 2018 Nov; 3(6):. PubMed ID: 30487155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol.
    Teixeira MC; Raposo LR; Mira NP; Lourenço AB; Sá-Correia I
    Appl Environ Microbiol; 2009 Sep; 75(18):5761-72. PubMed ID: 19633105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory and evolutionary adaptation of yeast to acute lethal ethanol stress.
    Yang J; Tavazoie S
    PLoS One; 2020; 15(11):e0239528. PubMed ID: 33170850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ETP1/YHL010c is a novel gene needed for the adaptation of Saccharomyces cerevisiae to ethanol.
    Snowdon C; Schierholtz R; Poliszczuk P; Hughes S; van der Merwe G
    FEMS Yeast Res; 2009 May; 9(3):372-80. PubMed ID: 19416103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new simple method for isolating multistress-tolerant semidominant mutants of Saccharomyces cerevisiae by one-step selection under lethal hydrogen peroxide stress condition.
    Nakagawa Y; Seita J; Komiyama S; Yamamura H; Hayakawa M; Iimura Y
    Biosci Biotechnol Biochem; 2013; 77(2):224-8. PubMed ID: 23391901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of novel genes to assign enhanced tolerance to osmotic stress in Saccharomyces cerevisiae.
    Kim B; Kim HS
    FEMS Microbiol Lett; 2018 Jul; 365(14):. PubMed ID: 29931330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses.
    Kaino T; Takagi H
    Appl Microbiol Biotechnol; 2008 May; 79(2):273-83. PubMed ID: 18351334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress.
    van Voorst F; Houghton-Larsen J; Jønson L; Kielland-Brandt MC; Brandt A
    Yeast; 2006 Apr; 23(5):351-9. PubMed ID: 16598687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray.
    Dinh TN; Nagahisa K; Yoshikawa K; Hirasawa T; Furusawa C; Shimizu H
    Bioprocess Biosyst Eng; 2009 Aug; 32(5):681-8. PubMed ID: 19125301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae.
    Alexandre H; Ansanay-Galeote V; Dequin S; Blondin B
    FEBS Lett; 2001 Jun; 498(1):98-103. PubMed ID: 11389906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress.
    Cheng Y; Du Z; Zhu H; Guo X; He X
    Sci Rep; 2016 Aug; 6():31311. PubMed ID: 27507154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae.
    Stanley D; Bandara A; Fraser S; Chambers PJ; Stanley GA
    J Appl Microbiol; 2010 Jul; 109(1):13-24. PubMed ID: 20070446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.
    Zheng YL; Wang SA
    PLoS One; 2015; 10(8):e0133889. PubMed ID: 26244846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae.
    Ohta E; Nakayama Y; Mukai Y; Bamba T; Fukusaki E
    J Biosci Bioeng; 2016 Apr; 121(4):399-405. PubMed ID: 26344121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.
    Kawahata M; Masaki K; Fujii T; Iefuji H
    FEMS Yeast Res; 2006 Sep; 6(6):924-36. PubMed ID: 16911514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae.
    Kim NR; Yang J; Kwon H; An J; Choi W; Kim W
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8227-38. PubMed ID: 23709042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.