These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 19054230)
1. Fe(III) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17. Li XM; Zhou SG; Li FB; Wu CY; Zhuang L; Xu W; Liu L J Appl Microbiol; 2009 Jan; 106(1):130-9. PubMed ID: 19054230 [TBL] [Abstract][Full Text] [Related]
2. Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17. Liu T; Li X; Zhang W; Hu M; Li F J Colloid Interface Sci; 2014 Jun; 423():25-32. PubMed ID: 24703664 [TBL] [Abstract][Full Text] [Related]
3. Enhanced remediation of carbon tetrachloride by Fe(II)-Fe(III) systems in the presence of copper ions. Maithreepala RA; Doong RA Water Sci Technol; 2004; 50(8):161-8. PubMed ID: 15566199 [TBL] [Abstract][Full Text] [Related]
4. Transformation of carbon tetrachloride by biogenic iron species in the presence of Geobacter sulfurreducens and electron shuttles. Maithreepala RA; Doong RA J Hazard Mater; 2009 May; 164(1):337-44. PubMed ID: 18804909 [TBL] [Abstract][Full Text] [Related]
5. Effect of iron(III), humic acids and anthraquinone-2,6-disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2. Bhushan B; Halasz A; Hawari J J Appl Microbiol; 2006 Mar; 100(3):555-63. PubMed ID: 16478495 [TBL] [Abstract][Full Text] [Related]
6. Effect of biogenic iron species and copper ions on the reduction of carbon tetrachloride under iron-reducing conditions. Maithreepala RA; Doong RA Chemosphere; 2008 Feb; 70(8):1405-13. PubMed ID: 17963818 [TBL] [Abstract][Full Text] [Related]
7. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17. Li X; Liu L; Liu T; Yuan T; Zhang W; Li F; Zhou S; Li Y Chemosphere; 2013 Jun; 92(2):218-24. PubMed ID: 23461838 [TBL] [Abstract][Full Text] [Related]
8. [Microbial reduction ability of various iron oxides in pure culture experiment]. Qu D; Schnell S Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):745-9. PubMed ID: 12552834 [TBL] [Abstract][Full Text] [Related]
9. Carboxydothermus siderophilus sp. nov., a thermophilic, hydrogenogenic, carboxydotrophic, dissimilatory Fe(III)-reducing bacterium from a Kamchatka hot spring. Slepova TV; Sokolova TG; Kolganova TV; Tourova TP; Bonch-Osmolovskaya EA Int J Syst Evol Microbiol; 2009 Feb; 59(Pt 2):213-7. PubMed ID: 19196756 [TBL] [Abstract][Full Text] [Related]
10. Iron and arsenic release from aquifer solids in response to biostimulation. McLean JE; Dupont RR; Sorensen DL J Environ Qual; 2006; 35(4):1193-203. PubMed ID: 16825439 [TBL] [Abstract][Full Text] [Related]
11. Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage, and humic acid. Jang JH; Dempsey BA; Burgos WD Water Res; 2008 Apr; 42(8-9):2269-77. PubMed ID: 18191438 [TBL] [Abstract][Full Text] [Related]
12. Alkaline extracellular reduction: isolation and characterization of an alkaliphilic and halotolerant bacterium, Bacillus pseudofirmus MC02. Ma C; Zhuang L; Zhou SG; Yang GQ; Yuan Y; Xu RX J Appl Microbiol; 2012 May; 112(5):883-91. PubMed ID: 22385319 [TBL] [Abstract][Full Text] [Related]
13. Enhanced reduction of Fe(III) oxides and methyl orange by Klebsiella oxytoca in presence of anthraquinone-2-disulfonate. Yu L; Wang S; Tang QW; Cao MY; Li J; Yuan K; Wang P; Li WW Appl Microbiol Biotechnol; 2016 May; 100(10):4617-25. PubMed ID: 26762391 [TBL] [Abstract][Full Text] [Related]
14. Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. strain ES6. Gerlach R; Field EK; Viamajala S; Peyton BM; Apel WA; Cunningham AB Biodegradation; 2011 Sep; 22(5):983-95. PubMed ID: 21318474 [TBL] [Abstract][Full Text] [Related]
15. Quinone-respiration improves dechlorination of carbon tetrachloride by anaerobic sludge. Cervantes FJ; Vu-Thi-Thu L; Lettinga G; Field JA Appl Microbiol Biotechnol; 2004 Jun; 64(5):702-11. PubMed ID: 14762702 [TBL] [Abstract][Full Text] [Related]
16. Synergistic effect of copper ion on the reductive dechlorination of carbon tetrachloride by surface-bound Fe(II) associated with goethite. Maithreepala RA; Doong RA Environ Sci Technol; 2004 Jan; 38(1):260-8. PubMed ID: 14740745 [TBL] [Abstract][Full Text] [Related]
18. The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01. Wang Y; Wu C; Wang X; Zhou S J Hazard Mater; 2009 May; 164(2-3):941-7. PubMed ID: 18849114 [TBL] [Abstract][Full Text] [Related]
19. Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. Wu CY; Zhuang L; Zhou SG; Li FB; Li XM FEMS Microbiol Ecol; 2010 Jan; 71(1):106-13. PubMed ID: 19895639 [TBL] [Abstract][Full Text] [Related]
20. Enhanced biotransformation of DDTs by an iron- and humic-reducing bacteria Aeromonas hydrophila HS01 upon addition of goethite and anthraquinone-2,6-disulphonic disodium salt (AQDS). Cao F; Liu TX; Wu CY; Li FB; Li XM; Yu HY; Tong H; Chen MJ J Agric Food Chem; 2012 Nov; 60(45):11238-44. PubMed ID: 23095105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]