These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 19054519)

  • 1. Unsteady flow field around a human hand and propulsive force in swimming.
    Matsuuchi K; Miwa T; Nomura T; Sakakibara J; Shintani H; Ungerechts BE
    J Biomech; 2009 Jan; 42(1):42-7. PubMed ID: 19054519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsteady hydrodynamic forces acting on a robotic hand and its flow field.
    Takagi H; Nakashima M; Ozaki T; Matsuuchi K
    J Biomech; 2013 Jul; 46(11):1825-32. PubMed ID: 23764175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsteady hydrodynamic forces acting on a robotic arm and its flow field: application to the crawl stroke.
    Takagi H; Nakashima M; Ozaki T; Matsuuchi K
    J Biomech; 2014 Apr; 47(6):1401-8. PubMed ID: 24524992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Median fin function in bluegill sunfish Lepomis macrochirus: streamwise vortex structure during steady swimming.
    Tytell ED
    J Exp Biol; 2006 Apr; 209(Pt 8):1516-34. PubMed ID: 16574809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hydrodynamics of eel swimming II. Effect of swimming speed.
    Tytell ED
    J Exp Biol; 2004 Sep; 207(Pt 19):3265-79. PubMed ID: 15326203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics.
    Rouboa A; Silva A; Leal L; Rocha J; Alves F
    J Biomech; 2006; 39(7):1239-48. PubMed ID: 15950980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unsteady hydrodynamic forces acting on a hand and its flow field during sculling motion.
    Takagi H; Shimada S; Miwa T; Kudo S; Sanders R; Matsuuchi K
    Hum Mov Sci; 2014 Dec; 38():133-42. PubMed ID: 25310026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A quasi three-dimensional visualization of unsteady wake flow in human undulatory swimming.
    Shimojo H; Gonjo T; Sakakibara J; Sengoku Y; Sanders R; Takagi H
    J Biomech; 2019 Aug; 93():60-69. PubMed ID: 31303331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of hand forces and propelling efficiency during front crawl swimming with hand paddles.
    Gourgoulis V; Aggeloussis N; Vezos N; Kasimatis P; Antoniou P; Mavromatis G
    J Biomech; 2008; 41(1):208-15. PubMed ID: 17706655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An overview of a Lagrangian method for analysis of animal wake dynamics.
    Peng J; Dabiri JO
    J Exp Biol; 2008 Jan; 211(Pt 2):280-7. PubMed ID: 18165256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jet flow in steadily swimming adult squid.
    Anderson EJ; Grosenbaugh MA
    J Exp Biol; 2005 Mar; 208(Pt 6):1125-46. PubMed ID: 15767313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis: evidence of multiple jet 'modes' and their implications for propulsive efficiency.
    Bartol IK; Krueger PS; Stewart WJ; Thompson JT
    J Exp Biol; 2009 Jun; 212(Pt 12):1889-903. PubMed ID: 19483007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining propulsive force in front crawl swimming: a comparison of two methods.
    Berger MA; Hollander AP; de Groot G
    J Sports Sci; 1999 Feb; 17(2):97-105. PubMed ID: 10069266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamics of surface swimming in leopard frogs (Rana pipiens).
    Johansson LC; Lauder GV
    J Exp Biol; 2004 Oct; 207(Pt 22):3945-58. PubMed ID: 15472025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 'upstream wake' of swimming and flying animals and its correlation with propulsive efficiency.
    Peng J; Dabiri JO
    J Exp Biol; 2008 Aug; 211(Pt 16):2669-77. PubMed ID: 18689420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical and experimental investigations of human swimming motions.
    Takagi H; Nakashima M; Sato Y; Matsuuchi K; Sanders RH
    J Sports Sci; 2016 Aug; 34(16):1564-80. PubMed ID: 26699925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses.
    Dabiri JO; Colin SP; Costello JH; Gharib M
    J Exp Biol; 2005 Apr; 208(Pt 7):1257-65. PubMed ID: 15781886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive measurement of instantaneous forces during aquatic locomotion: a case study of the bluegill sunfish pectoral fin.
    Peng J; Dabiri JO; Madden PG; Lauder GV
    J Exp Biol; 2007 Feb; 210(Pt 4):685-98. PubMed ID: 17267654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal patterns of water flow generated by suction-feeding bluegill sunfish Lepomis macrochirus resolved by Particle Image Velocimetry.
    Day SW; Higham TE; Cheer AY; Wainwright PC
    J Exp Biol; 2005 Jul; 208(Pt 14):2661-71. PubMed ID: 16000536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of fluid forces acting on a hand model in unsteady flow conditions.
    Kudo S; Yanai T; Wilson B; Takagi H; Vennell R
    J Biomech; 2008; 41(5):1131-6. PubMed ID: 18243218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.