These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 19054519)

  • 21. Dynamics of the vortex wakes of flying and swimming vertebrates.
    Rayner JM
    Symp Soc Exp Biol; 1995; 49():131-55. PubMed ID: 8571221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative analysis of tethered and free-swimming copepodid flow fields.
    Catton KB; Webster DR; Brown J; Yen J
    J Exp Biol; 2007 Jan; 210(Pt 2):299-310. PubMed ID: 17210966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanics of swimming in the pufferfish Diodon holocanthus: propulsive momentum enhancement is an adaptation for thrust production in an undulatory median and paired-fin swimmer.
    Blake RW; Chan KH
    J Fish Biol; 2011 Dec; 79(7):1774-94. PubMed ID: 22141887
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of unsteady flow due to acceleration on hydrodynamic forces acting on the hand in swimming.
    Kudo S; Vennell R; Wilson B
    J Biomech; 2013 Jun; 46(10):1697-704. PubMed ID: 23684079
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of a swimmer's hand and forearm in impulsive start from rest using computational fluid dynamics in unsteady flow conditions.
    Samson M; Monnet T; Bernard A; Lacouture P; David L
    J Biomech; 2018 Jan; 67():157-165. PubMed ID: 29269003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. "Pumped-up propulsion" during front crawl swimming.
    Toussaint HM; Van den Berg C; Beek WJ
    Med Sci Sports Exerc; 2002 Feb; 34(2):314-9. PubMed ID: 11828242
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrodynamic pressure sensing with an artificial lateral line in steady and unsteady flows.
    Venturelli R; Akanyeti O; Visentin F; Ježov J; Chambers LD; Toming G; Brown J; Kruusmaa M; Megill WM; Fiorini P
    Bioinspir Biomim; 2012 Sep; 7(3):036004. PubMed ID: 22498729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flow patterns of larval fish: undulatory swimming in the intermediate flow regime.
    Müller UK; van den Boogaart JG; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):196-205. PubMed ID: 18165247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Propulsive force calculations in swimming frogs. I. A momentum-impulse approach.
    Nauwelaerts S; Stamhuis EJ; Aerts P
    J Exp Biol; 2005 Apr; 208(Pt 8):1435-43. PubMed ID: 15802667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using reverse engineering and computational fluid dynamics to investigate a lower arm amputee swimmer's performance.
    Lecrivain G; Slaouti A; Payton C; Kennedy I
    J Biomech; 2008 Sep; 41(13):2855-9. PubMed ID: 18718594
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin.
    Tangorra JL; Lauder GV; Hunter IW; Mittal R; Madden PG; Bozkurttas M
    J Exp Biol; 2010 Dec; 213(Pt 23):4043-54. PubMed ID: 21075946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the estimation of swimming and flying forces from wake measurements.
    Dabiri JO
    J Exp Biol; 2005 Sep; 208(Pt 18):3519-32. PubMed ID: 16155224
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Buoyancy is the primary source of generating bodyroll in front-crawl swimming.
    Yanai T
    J Biomech; 2004 May; 37(5):605-12. PubMed ID: 15046989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Propulsive force calculations in swimming frogs. II. Application of a vortex ring model to DPIV data.
    Stamhuis EJ; Nauwelaerts S
    J Exp Biol; 2005 Apr; 208(Pt 8):1445-51. PubMed ID: 15802668
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria.
    Sahin M; Mohseni K; Colin SP
    J Exp Biol; 2009 Aug; 212(Pt 16):2656-67. PubMed ID: 19648411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of a swimmer's hand and arm in steady flow conditions using computational fluid dynamics.
    Bixler B; Riewald S
    J Biomech; 2002 May; 35(5):713-7. PubMed ID: 11955512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An algorithm to estimate unsteady and quasi-steady pressure fields from velocity field measurements.
    Dabiri JO; Bose S; Gemmell BJ; Colin SP; Costello JH
    J Exp Biol; 2014 Feb; 217(Pt 3):331-6. PubMed ID: 24115059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes.
    Bartol IK; Gharib M; Webb PW; Weihs D; Gordon MS
    J Exp Biol; 2005 Jan; 208(Pt 2):327-44. PubMed ID: 15634852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.
    Huhn F; van Rees WM; Gazzola M; Rossinelli D; Haller G; Koumoutsakos P
    Chaos; 2015 Aug; 25(8):087405. PubMed ID: 26328576
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of the entry-and-stretch phase at the different paces of race in front crawl swimming.
    Samson M; Monnet T; Bernard A; Lacouture P; David L
    J Sports Sci; 2015; 33(15):1535-43. PubMed ID: 25654468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.