These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19054739)

  • 1. Modelling the effectiveness and risks of vaccination strategies to control classical swine fever epidemics.
    Backer JA; Hagenaars TJ; van Roermund HJ; de Jong MC
    J R Soc Interface; 2009 Oct; 6(39):849-61. PubMed ID: 19054739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classical swine fever outbreak containment using antiviral supplementation: a potential alternative to emergency vaccination and stamping-out.
    Ribbens S; Goris N; Neyts J; Dewulf J
    Prev Vet Med; 2012 Sep; 106(1):34-41. PubMed ID: 22465433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of control and surveillance strategies for classical swine fever using a simulation model.
    Dürr S; Zu Dohna H; Di Labio E; Carpenter TE; Doherr MG
    Prev Vet Med; 2013 Jan; 108(1):73-84. PubMed ID: 22858424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of movement restrictions and pre-emptive destruction in the emergency control strategy against CSF outbreaks in domestic pigs.
    Thulke HH; Eisinger D; Beer M
    Prev Vet Med; 2011 Apr; 99(1):28-37. PubMed ID: 21300412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of the effect of control strategies on classical swine fever epidemics.
    Klinkenberg D; Everts-van der Wind A; Graat EA; de Jong MC
    Math Biosci; 2003 Dec; 186(2):145-73. PubMed ID: 14583170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergency vaccination against classical swine fever.
    van Oirschot JT
    Dev Biol (Basel); 2003; 114():259-67. PubMed ID: 14677696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potential of antiviral agents to control classical swine fever: a modelling study.
    Backer JA; Vrancken R; Neyts J; Goris N
    Antiviral Res; 2013 Sep; 99(3):245-50. PubMed ID: 23827097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling disease outbreaks in wildlife using limited culling: modelling classical swine fever incursions in wild pigs in Australia.
    Cowled BD; Garner MG; Negus K; Ward MP
    Vet Res; 2012 Jan; 43(1):3. PubMed ID: 22243996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of Cross-border Impacts Resulting from Classical Swine Fever Epidemics within the Netherlands and Germany.
    Hop GE; Mourits MC; Oude Lansink AG; Saatkamp HW
    Transbound Emerg Dis; 2016 Feb; 63(1):e80-e102. PubMed ID: 24894372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vaccination against foot-and-mouth disease I: epidemiological consequences.
    Backer JA; Hagenaars TJ; Nodelijk G; van Roermund HJ
    Prev Vet Med; 2012 Nov; 107(1-2):27-40. PubMed ID: 22749763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classical swine fever: the European experience and a guide for infected areas.
    Vandeputte J; Chappuis G
    Rev Sci Tech; 1999 Dec; 18(3):638-47. PubMed ID: 10588007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multicriteria Evaluation of Classical Swine Fever Control Strategies Using the Choquet Integral.
    Brosig J; Traulsen I; Krieter J
    Transbound Emerg Dis; 2016 Feb; 63(1):68-78. PubMed ID: 24661927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing the epidemiological and economic effects of control strategies against classical swine fever in Denmark.
    Boklund A; Toft N; Alban L; Uttenthal A
    Prev Vet Med; 2009 Aug; 90(3-4):180-93. PubMed ID: 19439381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epidemiological analysis of classical swine fever in wild boars in Japan.
    Shimizu Y; Hayama Y; Murato Y; Sawai K; Yamaguchi E; Yamamoto T
    BMC Vet Res; 2021 May; 17(1):188. PubMed ID: 33975588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Persistent infection with the classical swine fever virus in vaccinated animals: a risk factor?].
    Loeffen W
    Tijdschr Diergeneeskd; 2008 Jun; 133(11):482-4. PubMed ID: 18578143
    [No Abstract]   [Full Text] [Related]  

  • 16. [The Netherlands is ready to fight classical swine fever through vaccination].
    Tijdschr Diergeneeskd; 2009 Jan; 134(1):20-1. PubMed ID: 19256216
    [No Abstract]   [Full Text] [Related]  

  • 17. Spatial and stochastic simulation to evaluate the impact of events and control measures on the 1997-1998 classical swine fever epidemic in The Netherlands. II. Comparison of control strategies.
    Nielen M; Jalvingh AW; Meuwissen MP; Horst SH; Dijkhuizen AA
    Prev Vet Med; 1999 Dec; 42(3-4):297-317. PubMed ID: 10619161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling highly pathogenic avian influenza outbreaks: An epidemiological and economic model analysis.
    Backer JA; van Roermund HJ; Fischer EA; van Asseldonk MA; Bergevoet RH
    Prev Vet Med; 2015 Sep; 121(1-2):142-50. PubMed ID: 26087887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The classical swine fever epidemic 1997-1998 in The Netherlands: descriptive epidemiology.
    Elber AR; Stegeman A; Moser H; Ekker HM; Smak JA; Pluimers FH
    Prev Vet Med; 1999 Dec; 42(3-4):157-84. PubMed ID: 10619154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classical swine fever: challenges for the emerging swine sector in Bhutan.
    Villanueva-Cabezas JP; Wangchuk J
    Trop Anim Health Prod; 2020 Sep; 52(5):2731-2735. PubMed ID: 32180105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.