These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 19054767)
1. Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1. Cheng Q; Sandalova T; Lindqvist Y; Arnér ES J Biol Chem; 2009 Feb; 284(6):3998-4008. PubMed ID: 19054767 [TBL] [Abstract][Full Text] [Related]
2. Details in the catalytic mechanism of mammalian thioredoxin reductase 1 revealed using point mutations and juglone-coupled enzyme activities. Xu J; Cheng Q; Arnér ES Free Radic Biol Med; 2016 May; 94():110-20. PubMed ID: 26898501 [TBL] [Abstract][Full Text] [Related]
3. Rapid induction of cell death by selenium-compromised thioredoxin reductase 1 but not by the fully active enzyme containing selenocysteine. Anestål K; Arnér ES J Biol Chem; 2003 May; 278(18):15966-72. PubMed ID: 12574159 [TBL] [Abstract][Full Text] [Related]
4. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes. Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699 [TBL] [Abstract][Full Text] [Related]
5. Highly active dimeric and low-activity tetrameric forms of selenium-containing rat thioredoxin reductase 1. Rengby O; Cheng Q; Vahter M; Jörnvall H; Arnér ES Free Radic Biol Med; 2009 Apr; 46(7):893-904. PubMed ID: 19146949 [TBL] [Abstract][Full Text] [Related]
6. Characterization of structural and functional role of selenocysteine in selenoprotein H and its impact on DNA binding. Barage SH; Deobagkar DD; Baladhye VB Amino Acids; 2018 May; 50(5):593-607. PubMed ID: 29480333 [TBL] [Abstract][Full Text] [Related]
7. Thioredoxin reductase 1 and NADPH directly protect protein tyrosine phosphatase 1B from inactivation during H Dagnell M; Pace PE; Cheng Q; Frijhoff J; Östman A; Arnér ESJ; Hampton MB; Winterbourn CC J Biol Chem; 2017 Sep; 292(35):14371-14380. PubMed ID: 28684416 [TBL] [Abstract][Full Text] [Related]
8. Can Selenoenzymes Resist Electrophilic Modification? Evidence from Thioredoxin Reductase and a Mutant Containing α-Methylselenocysteine. Ste Marie EJ; Wehrle RJ; Haupt DJ; Wood NB; van der Vliet A; Previs MJ; Masterson DS; Hondal RJ Biochemistry; 2020 Sep; 59(36):3300-3315. PubMed ID: 32845139 [TBL] [Abstract][Full Text] [Related]
10. Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine? Arnér ES Exp Cell Res; 2010 May; 316(8):1296-303. PubMed ID: 20206159 [TBL] [Abstract][Full Text] [Related]
11. No selenium required: reactions catalyzed by mammalian thioredoxin reductase that are independent of a selenocysteine residue. Lothrop AP; Ruggles EL; Hondal RJ Biochemistry; 2009 Jul; 48(26):6213-23. PubMed ID: 19366212 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional structure of a mammalian thioredoxin reductase: implications for mechanism and evolution of a selenocysteine-dependent enzyme. Sandalova T; Zhong L; Lindqvist Y; Holmgren A; Schneider G Proc Natl Acad Sci U S A; 2001 Aug; 98(17):9533-8. PubMed ID: 11481439 [TBL] [Abstract][Full Text] [Related]
14. Why is mammalian thioredoxin reductase 1 so dependent upon the use of selenium? Lothrop AP; Snider GW; Ruggles EL; Hondal RJ Biochemistry; 2014 Jan; 53(3):554-65. PubMed ID: 24393022 [TBL] [Abstract][Full Text] [Related]
15. Generation of Recombinant Mammalian Selenoproteins through Genetic Code Expansion with Photocaged Selenocysteine. Peeler JC; Falco JA; Kelemen RE; Abo M; Chartier BV; Edinger LC; Chen J; Chatterjee A; Weerapana E ACS Chem Biol; 2020 Jun; 15(6):1535-1540. PubMed ID: 32330002 [TBL] [Abstract][Full Text] [Related]
16. Substrate and inhibitor specificities differ between human cytosolic and mitochondrial thioredoxin reductases: Implications for development of specific inhibitors. Rackham O; Shearwood AM; Thyer R; McNamara E; Davies SM; Callus BA; Miranda-Vizuete A; Berners-Price SJ; Cheng Q; Arnér ES; Filipovska A Free Radic Biol Med; 2011 Mar; 50(6):689-99. PubMed ID: 21172426 [TBL] [Abstract][Full Text] [Related]
17. Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine. Kim MJ; Lee BC; Hwang KY; Gladyshev VN; Kim HY Biochem Biophys Res Commun; 2015 Jun; 461(4):648-52. PubMed ID: 25912135 [TBL] [Abstract][Full Text] [Related]
18. Penultimate selenocysteine residue replaced by cysteine in thioredoxin reductase from selenium-deficient rat liver. Lu J; Zhong L; Lönn ME; Burk RF; Hill KE; Holmgren A FASEB J; 2009 Aug; 23(8):2394-402. PubMed ID: 19351701 [TBL] [Abstract][Full Text] [Related]
19. Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases. Kim HY; Gladyshev VN PLoS Biol; 2005 Dec; 3(12):e375. PubMed ID: 16262444 [TBL] [Abstract][Full Text] [Related]
20. Chemical Biology Approaches to Interrogate the Selenoproteome. Peeler JC; Weerapana E Acc Chem Res; 2019 Oct; 52(10):2832-2840. PubMed ID: 31523956 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]