These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 1905477)

  • 41. A method for measuring the molecular ratio of inhalation to exhalation and effect of inspired oxygen levels on oxygen consumption.
    Shinozaki K; Okuma Y; Saeki K; Miyara SJ; Aoki T; Molmenti EP; Yin T; Kim J; Lampe JW; Becker LB
    Sci Rep; 2021 Jun; 11(1):12815. PubMed ID: 34140533
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energy expenditure and gas exchange measurements in postoperative patients: thermodilution versus indirect calorimetry.
    Brandi LS; Grana M; Mazzanti T; Giunta F; Natali A; Ferrannini E
    Crit Care Med; 1992 Sep; 20(9):1273-83. PubMed ID: 1521442
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Continuous non-invasive monitoring of energy expenditure, oxygen consumption and alveolar ventilation during controlled ventilation: validation in an oxygen consuming lung model.
    Holk K; Einarsson SG; Svensson KL; Bengtson JP; Stenqvist O
    Acta Anaesthesiol Scand; 1996 May; 40(5):530-7. PubMed ID: 8792881
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Accuracy of Oxygen Consumption and Carbon Dioxide Elimination Measurements in 2 Breath-by-Breath Devices.
    Smallwood CD; Kheir JN; Walsh BK; Mehta NM
    Respir Care; 2017 Apr; 62(4):475-480. PubMed ID: 28096476
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxygen consumption after cardiopulmonary bypass--implications of different measuring methods.
    Oudemans-van Straaten HM; Scheffer GJ; Eysman L; Wildevuur CR
    Intensive Care Med; 1993; 19(2):105-10. PubMed ID: 8486864
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of metabolic measuring instruments for use in critically ill patients.
    Makita K; Nunn JF; Royston B
    Crit Care Med; 1990 Jun; 18(6):638-44. PubMed ID: 2111757
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metabolic monitoring in the intensive care unit: a comparison of the Medgraphics Ultima, Deltatrac II, and Douglas bag collection methods.
    Black C; Grocott MP; Singer M
    Br J Anaesth; 2015 Feb; 114(2):261-8. PubMed ID: 25354946
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Validation of a 5-minute steady state indirect calorimetry protocol for resting energy expenditure in critically ill patients.
    Frankenfield DC; Sarson GY; Blosser SA; Cooney RN; Smith JS
    J Am Coll Nutr; 1996 Aug; 15(4):397-402. PubMed ID: 8829096
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Measurement of gas exchange in intensive care: laboratory and clinical validation of a new device.
    Takala J; Keinänen O; Väisänen P; Kari A
    Crit Care Med; 1989 Oct; 17(10):1041-7. PubMed ID: 2676345
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Validation of indirect calorimetry for measurement of energy expenditure in healthy volunteers undergoing pressure controlled non-invasive ventilation support.
    Siirala W; Noponen T; Olkkola KT; Vuori A; Koivisto M; Hurme S; Aantaa R
    J Clin Monit Comput; 2012 Feb; 26(1):37-43. PubMed ID: 22207315
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Failure in measuring gas exchange in the ICU.
    Bracco D; Chioléro R; Pasche O; Revelly JP
    Chest; 1995 May; 107(5):1406-10. PubMed ID: 7750339
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel portable device measures preoperative patient metabolic gas exchange.
    Rosenbaum A; Howard HC; Breen PH
    Anesth Analg; 2008 Feb; 106(2):509-16, table of contents. PubMed ID: 18227307
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metabolic correlates in infants and children during anaesthesia and surgery.
    Lindahl SG; Hulse MG; Hatch DJ
    Acta Anaesthesiol Scand; 1984 Feb; 28(1):52-6. PubMed ID: 6711262
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Continuous breathing circuit flow and tracheal tube cuff leak: sources of error during pediatric indirect calorimetry.
    Räsänen J
    Crit Care Med; 1992 Sep; 20(9):1335-40. PubMed ID: 1521450
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in carbon dioxide production and oxygen uptake evaluated using indirect calorimetry in mechanically ventilated patients with sepsis.
    Hirayama I; Asada T; Yamamoto M; Hayase N; Hiruma T; Doi K
    Crit Care; 2021 Dec; 25(1):416. PubMed ID: 34863262
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxygen consumption and carbon dioxide elimination in infants and children during anaesthesia and surgery.
    Lindahl SG
    Br J Anaesth; 1989 Jan; 62(1):70-6. PubMed ID: 2492815
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiple propane gas burn rates procedure to determine accuracy and linearity of indirect calorimetry systems: an experimental assessment of a method.
    Ismail M; Alsubheen SA; Loucks-Atkinson A; Atkinson M; Alkanani T; Kelly LP; Basset F
    PeerJ; 2022; 10():e13882. PubMed ID: 36061755
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Test-retest variability of VO
    Schoffelen PFM; den Hoed M; van Breda E; Plasqui G
    Scand J Med Sci Sports; 2019 Feb; 29(2):213-222. PubMed ID: 30341979
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of a system for on-line analysis of VO2 and VCO2 for clinical applicability.
    Shimada Y; Yoshiya I; Hirata T; Takezawa J; Taenaka N
    Anesthesiology; 1984 Sep; 61(3):311-4. PubMed ID: 6433749
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ventilatory and metabolic responses to acute hyperoxia in newborns.
    Mortola JP; Frappell PB; Dotta A; Matsuoka T; Fox G; Weeks S; Mayer D
    Am Rev Respir Dis; 1992 Jul; 146(1):11-5. PubMed ID: 1626793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.