These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19055347)

  • 1. Magnetic permanently confined micelle arrays for treating hydrophobic organic compound contamination.
    Wang P; Shi Q; Shi Y; Clark KK; Stucky GD; Keller AA
    J Am Chem Soc; 2009 Jan; 131(1):182-8. PubMed ID: 19055347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural organic matter removal by adsorption onto magnetic permanently confined micelle arrays.
    Wang H; Keller AA; Clark KK
    J Hazard Mater; 2011 Oct; 194():156-61. PubMed ID: 21871721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partitioning of hydrophobic organic compounds within soil-water-surfactant systems.
    Wang P; Keller AA
    Water Res; 2008 Apr; 42(8-9):2093-101. PubMed ID: 18067946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant-soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review.
    Laha S; Tansel B; Ussawarujikulchai A
    J Environ Manage; 2009 Jan; 90(1):95-100. PubMed ID: 18838206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil particle-size dependent partitioning behavior of pesticides within water-soil-cationic surfactant systems.
    Wang P; Keller AA
    Water Res; 2008 Aug; 42(14):3781-8. PubMed ID: 18676001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of perchlorate and other oxyanions onto magnetic permanently confined micelle arrays (Mag-PCMAs).
    Clark KK; Keller AA
    Water Res; 2012 Mar; 46(3):635-44. PubMed ID: 22154111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partitioning of hydrophobic pesticides within a soil-water-anionic surfactant system.
    Wang P; Keller AA
    Water Res; 2009 Feb; 43(3):706-14. PubMed ID: 19026434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partitioning of hydrophobic organic chemicals (HOC) into anionic and cationic surfactant-modified sorbents.
    Karapanagioti HK; Sabatini DA; Bowman RS
    Water Res; 2005 Feb; 39(4):699-709. PubMed ID: 15707643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms controlling adsorption of natural organic matter on surfactant-modified iron oxide-coated sand.
    Ding C; Shang C
    Water Res; 2010 Jun; 44(12):3651-8. PubMed ID: 20457463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant templating effects on the encapsulation of iron oxide nanoparticles within silica microspheres.
    Zheng T; Pang J; Tan G; He J; McPherson GL; Lu Y; John VT; Zhan J
    Langmuir; 2007 Apr; 23(9):5143-7. PubMed ID: 17397201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of natural organic matter using surfactant-modified iron oxide-coated sand.
    Ding C; Yang X; Liu W; Chang Y; Shang C
    J Hazard Mater; 2010 Feb; 174(1-3):567-72. PubMed ID: 19828248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of Pb by EDTA-washing in the presence of hydrophobic organic contaminants or anionic surfactant.
    Zhang W; Tsang DC; Lo IM
    J Hazard Mater; 2008 Jul; 155(3):433-9. PubMed ID: 18178310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic pollen grains as sorbents for facile removal of organic pollutants in aqueous media.
    Thio BJ; Clark KK; Keller AA
    J Hazard Mater; 2011 Oct; 194():53-61. PubMed ID: 21871731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of hydrophobic organic compounds onto a hydrophobic carbonaceous geosorbent in the presence of surfactants.
    Wang P; Keller AA
    Environ Toxicol Chem; 2008 Jun; 27(6):1237-43. PubMed ID: 18466041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tween 80 surfactant-enhanced bioremediation: toward a solution to the soil contamination by hydrophobic organic compounds.
    Cheng M; Zeng G; Huang D; Yang C; Lai C; Zhang C; Liu Y
    Crit Rev Biotechnol; 2018 Feb; 38(1):17-30. PubMed ID: 28423946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption and desorption of atrazine and diuron onto water dispersible soil primary size fractions.
    Wang P; Keller AA
    Water Res; 2009 Mar; 43(5):1448-56. PubMed ID: 19147172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of mesoporous magnetic gamma-Fe2O3 and its application to Cr(VI) removal from contaminated water.
    Wang P; Lo IM
    Water Res; 2009 Aug; 43(15):3727-34. PubMed ID: 19559458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of polar and nonpolar organic contaminants by oil-contaminated soil.
    Chen H; Chen S; Quan X; Zhao H; Zhang Y
    Chemosphere; 2008 Dec; 73(11):1832-7. PubMed ID: 18799183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sonochemical approach to the synthesis of Fe(3)O(4)@SiO(2) core-shell nanoparticles with tunable properties.
    Morel AL; Nikitenko SI; Gionnet K; Wattiaux A; Lai-Kee-Him J; Labrugere C; Chevalier B; Deleris G; Petibois C; Brisson A; Simonoff M
    ACS Nano; 2008 May; 2(5):847-56. PubMed ID: 19206481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Washing of field weathered crude oil contaminated soil with an environmentally compatible surfactant, alkyl polyglucoside.
    Han M; Ji G; Ni J
    Chemosphere; 2009 Jul; 76(5):579-86. PubMed ID: 19493558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.