These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19055442)

  • 1. Antimicrobial activity of pyrrocidines from Acremonium zeae against endophytes and pathogens of maize.
    Wicklow DT; Poling SM
    Phytopathology; 2009 Jan; 99(1):109-15. PubMed ID: 19055442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides.
    Wicklow DT; Roth S; Deyrup ST; Gloer JB
    Mycol Res; 2005 May; 109(Pt 5):610-8. PubMed ID: 16018316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrrocidine, a molecular off switch for fumonisin biosynthesis.
    Gao M; Glenn AE; Gu X; Mitchell TR; Satterlee T; Duke MV; Scheffler BE; Gold SE
    PLoS Pathog; 2020 Jul; 16(7):e1008595. PubMed ID: 32628727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acremonium zeae, a protective endophyte of maize, produces dihydroresorcylide and 7-hydroxydihydroresorcylides.
    Poling SM; Wicklow DT; Rogers KD; Gloer JB
    J Agric Food Chem; 2008 May; 56(9):3006-9. PubMed ID: 18416554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize.
    Wicklow DT; Jordan AM; Gloer JB
    Mycol Res; 2009 Dec; 113(Pt 12):1433-42. PubMed ID: 19825415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize.
    Wicklow DT; Rogers KD; Dowd PF; Gloer JB
    Fungal Biol; 2011 Feb; 115(2):133-42. PubMed ID: 21315311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of Fusarium verticillioides, cause of ear rot of maize, by Pseudomonas fluorescens.
    Nayaka SC; Shankar AC; Reddy MS; Niranjana SR; Prakash HS; Shetty HS; Mortensen CN
    Pest Manag Sci; 2009 Jul; 65(7):769-75. PubMed ID: 19347968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clavibacter nebraskensis causing Goss's wilt of maize: Five decades of detaining the enemy in the New World.
    Osdaghi E; Robertson AE; Jackson-Ziems TA; Abachi H; Li X; Harveson RM
    Mol Plant Pathol; 2023 Jul; 24(7):675-692. PubMed ID: 36116105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A survey of pre-harvest ear rot diseases of maize and associated mycotoxins in south and central Zambia.
    Mukanga M; Derera J; Tongoona P; Laing MD
    Int J Food Microbiol; 2010 Jul; 141(3):213-21. PubMed ID: 20626099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants.
    Martínez-Álvarez JC; Castro-Martínez C; Sánchez-Peña P; Gutiérrez-Dorado R; Maldonado-Mendoza IE
    World J Microbiol Biotechnol; 2016 May; 32(5):75. PubMed ID: 27038945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis.
    Zaccaron AZ; Woloshuk CP; Bluhm BH
    Fungal Biol; 2017 Nov; 121(11):966-983. PubMed ID: 29029703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endophytic Fusarium verticillioides reduces disease severity caused by Ustilago maydis on maize.
    Lee K; Pan JJ; May G
    FEMS Microbiol Lett; 2009 Oct; 299(1):31-7. PubMed ID: 19694816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In planta reduction of maize seedling stalk lesions by the bacterial endophyte Bacillus mojavensis.
    Bacon CW; Hinton DM
    Can J Microbiol; 2011 Jun; 57(6):485-92. PubMed ID: 21635192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pantoea stewartii subsp. stewartii exhibits surface motility, which is a critical aspect of Stewart's wilt disease development on maize.
    Herrera CM; Koutsoudis MD; Wang X; von Bodman SB
    Mol Plant Microbe Interact; 2008 Oct; 21(10):1359-70. PubMed ID: 18785831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An antibiotic complex from Lysobacter enzymogenes strain C3: antimicrobial activity and role in plant disease control.
    Li S; Jochum CC; Yu F; Zaleta-Rivera K; Du L; Harris SD; Yuen GY
    Phytopathology; 2008 Jun; 98(6):695-701. PubMed ID: 18944294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial endophytes inhabiting desert plants provide protection against seed rot caused by Fusarium verticillioides and promote growth in maize.
    Dinango VN; Dhouib H; Wakam LN; Kouokap LK; Youmbi DY; Eke P; Driss F; Tounsi S; Boyom FF; Frikha-Gargouri O
    Pest Manag Sci; 2024 Mar; 80(3):1206-1218. PubMed ID: 37886813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PCR-Mediated Detection and Quantification of the Goss's Wilt Pathogen Clavibacter michiganensis subsp. nebraskensis Via a Novel Gene Target.
    McNally RR; Ishimaru CA; Malvick DK
    Phytopathology; 2016 Dec; 106(12):1465-1472. PubMed ID: 27442535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of damping-off in maize seedlings by Pseudomonas corrugata.
    Pandey A; Palni LM; Hebbar KP
    Microbiol Res; 2001; 156(2):191-4. PubMed ID: 11572460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggressiveness of Cephalosporium maydis causing late wilt of maize in Spain.
    García-Carneros AB; Girón I; Molinero-Ruiz L
    Commun Agric Appl Biol Sci; 2012; 77(3):173-9. PubMed ID: 23878971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of two bacterial biocontrol agents on bacterial and fungal culturable groups associated with the roots of field-grown maize.
    Pereira P; Nesci A; Etcheverry M
    Lett Appl Microbiol; 2009 Apr; 48(4):493-9. PubMed ID: 19292823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.