BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19055630)

  • 1. Extracellular protectants produced by Clostridium perfringens cells at elevated temperatures.
    Heredia N; Ybarra P; Hernández C; García S
    Lett Appl Microbiol; 2009 Jan; 48(1):133-9. PubMed ID: 19055630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of temperature and length of heat shock treatment on the thermal tolerance and cell leakage of Cronobacter sakazakii BCRC 13988.
    Chang CH; Chiang ML; Chou CC
    Int J Food Microbiol; 2009 Sep; 134(3):184-9. PubMed ID: 19625097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of heat shock on the response of Cronobacter sakazakii to subsequent lethal stresses.
    Chang CH; Chiang ML; Chou CC
    Foodborne Pathog Dis; 2010 Jan; 7(1):71-6. PubMed ID: 19821740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of mild heat treatments on induction of thermotolerance in the biocontrol yeast Candida sake CPA-1 and viability after spray-drying.
    Cañamás TP; Viñas I; Usall J; Magan N; Solsona C; Teixidó N
    J Appl Microbiol; 2008 Mar; 104(3):767-75. PubMed ID: 17927743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and characterization of a clostripain-like protease-deficient mutant of Clostridium perfringens as a strain for clostridial gene expression.
    Tanaka H; Tamai E; Miyata S; Taniguchi Y; Nariya H; Hatano N; Houchi H; Okabe A
    Appl Microbiol Biotechnol; 2008 Jan; 77(5):1063-71. PubMed ID: 17965858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of Saccharomyces cerevisiae to thermal stress.
    Guyot S; Ferret E; Gervais P
    Biotechnol Bioeng; 2005 Nov; 92(4):403-9. PubMed ID: 16028292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The identification and characterization of Clostridium perfringens by real-time PCR, location of enterotoxin gene, and heat resistance.
    Grant KA; Kenyon S; Nwafor I; Plowman J; Ohai C; Halford-Maw R; Peck MW; McLauchlin J
    Foodborne Pathog Dis; 2008 Oct; 5(5):629-39. PubMed ID: 18681798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The role of alkylhydroxybenzenes in the adaptation of Micrococcus luteus to heat shock].
    Stepanenko IIu; Muliukin AL; Kozlova AN; Nikolaev IuA; El'-Registan GI
    Mikrobiologiia; 2005; 74(1):26-33. PubMed ID: 15835775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of chemically treated spores of Clostridium perfringens type A to an initiation protein.
    Franceschini TJ; Labbe RG
    Microbios; 1979; 25(100):85-91. PubMed ID: 232233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppressive effect of Clostridium perfringens-produced heat-stable substance(s) on proliferation of human colon adenocarcinoma HT29 cells in culture.
    Arimochi H; Morita K; Kataoka K; Nakanishi S; Kuwahara T; Ohnishi Y
    Cancer Lett; 2006 Sep; 241(2):228-34. PubMed ID: 16300879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the levels of heat resistance of wild-type, cpe knockout, and cpe plasmid-cured Clostridium perfringens type A strains.
    Raju D; Sarker MR
    Appl Environ Microbiol; 2005 Nov; 71(11):7618-20. PubMed ID: 16269817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in protein synthesis during thermal adaptation of Propionibacterium freudenreichii subsp. shermanii.
    Anastasiou R; Leverrier P; Krestas I; Rouault A; Kalantzopoulos G; Boyaval P; Tsakalidou E; Jan G
    Int J Food Microbiol; 2006 May; 108(3):301-14. PubMed ID: 16473425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence on the role of protein biosynthesis in the induction of heat tolerance of Lactobacillus rhamnosus GG by pressure pre-treatment.
    Ananta E; Knorr D
    Int J Food Microbiol; 2004 Nov; 96(3):307-13. PubMed ID: 15454321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of Clostridium perfringens at low temperatures.
    de Jong AE; Rombouts FM; Beumer RR
    Int J Food Microbiol; 2004 Dec; 97(1):71-80. PubMed ID: 15527920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum.
    Fiocco D; Capozzi V; Goffin P; Hols P; Spano G
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):909-15. PubMed ID: 17960374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous exposure of Xenopus A6 kidney epithelial cells to concurrent mild sodium arsenite and heat stress results in enhanced hsp30 and hsp70 gene expression and the acquisition of thermotolerance.
    Young JT; Gauley J; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Aug; 153(4):417-24. PubMed ID: 19358893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigations on airborne microorganisms in animal stables. 2. Report: further characterization of airborne Clostridium perfringens.
    Draz A; Chai T; Zucker BA
    Berl Munch Tierarztl Wochenschr; 1999 Apr; 112(4):124-6. PubMed ID: 10337053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of superoxide dismutase, catalase and thermostable direct hemolysin by, and growth in the presence of various nitrogen and carbon sources of heat-shocked and ethanol-shocked Vibrio parahaemolyticus.
    Chiang ML; Chou CC
    Int J Food Microbiol; 2008 Feb; 121(3):268-74. PubMed ID: 18158197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance of Escherichia coli grown at different temperatures to various environmental stresses.
    Cebrián G; Sagarzazu N; Pagán R; Condón S; Mañas P
    J Appl Microbiol; 2008 Jul; 105(1):271-8. PubMed ID: 18284486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.