These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19055856)

  • 1. Automated segmentation and morphometric analysis of the human airway tree from multidetector CT images.
    Nakamura M; Wada S; Miki T; Shimada Y; Suda Y; Tamura G
    J Physiol Sci; 2008 Dec; 58(7):493-8. PubMed ID: 19055856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans.
    Tschirren J; Hoffman EA; McLennan G; Sonka M
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1529-39. PubMed ID: 16353370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional segmentation and skeletonization to build an airway tree data structure for small animals.
    Chaturvedi A; Lee Z
    Phys Med Biol; 2005 Apr; 50(7):1405-19. PubMed ID: 15798332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images.
    Aykac D; Hoffman EA; McLennan G; Reinhardt JM
    IEEE Trans Med Imaging; 2003 Aug; 22(8):940-50. PubMed ID: 12906248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmentation and quantitative analysis of intrathoracic airway trees from computed tomography images.
    Tschirren J; Hoffman EA; McLennan G; Sonka M
    Proc Am Thorac Soc; 2005; 2(6):484-7, 503-4. PubMed ID: 16352753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided detection and quantification of cavitary tuberculosis from CT scans.
    Xu Z; Bagci U; Kubler A; Luna B; Jain S; Bishai WR; Mollura DJ
    Med Phys; 2013 Nov; 40(11):113701. PubMed ID: 24320475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Region growing algorithm combined with morphology and skeleton analysis for segmenting airway tree in CT images.
    Duan HH; Gong J; Sun XW; Nie SD
    J Xray Sci Technol; 2020; 28(2):311-331. PubMed ID: 32039883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-automated tabulation of the 3D topology and morphology of branching networks using CT: application to the airway tree.
    Sauret V; Goatman KA; Fleming JS; Bailey AG
    Phys Med Biol; 1999 Jul; 44(7):1625-38. PubMed ID: 10442701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CT-based geometry analysis and finite element models of the human and ovine bronchial tree.
    Tawhai MH; Hunter P; Tschirren J; Reinhardt J; McLennan G; Hoffman EA
    J Appl Physiol (1985); 2004 Dec; 97(6):2310-21. PubMed ID: 15322064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atlas-driven lung lobe segmentation in volumetric X-ray CT images.
    Zhang L; Hoffman EA; Reinhardt JM
    IEEE Trans Med Imaging; 2006 Jan; 25(1):1-16. PubMed ID: 16398410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Airway and pulmonary vascular measurements using contrast-enhanced micro-CT in rodents.
    Counter WB; Wang IQ; Farncombe TH; Labiris NR
    Am J Physiol Lung Cell Mol Physiol; 2013 Jun; 304(12):L831-43. PubMed ID: 23564512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the three-dimensional geometry of the central conducting airways in man using computed tomographic (CT) images.
    Sauret V; Halson PM; Brown IW; Fleming JS; Bailey AG
    J Anat; 2002 Feb; 200(Pt 2):123-34. PubMed ID: 11895110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [3D region growing algorithm driven by morphological dilation for airway tree segmentation in image guided therapy].
    Wang L; Gao X; Zhang G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Aug; 30(4):679-83, 691. PubMed ID: 24059036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of pulmonary airway tree structures.
    Palágyi K; Tschirren J; Hoffman EA; Sonka M
    Comput Biol Med; 2006 Sep; 36(9):974-96. PubMed ID: 16076463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated labeling of the airway tree in terms of lobes based on deep learning of bifurcation point detection.
    Wang M; Jin R; Jiang N; Liu H; Jiang S; Li K; Zhou X
    Med Biol Eng Comput; 2020 Sep; 58(9):2009-2024. PubMed ID: 32613598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT.
    Artaechevarria X; Pérez-Martín D; Ceresa M; de Biurrun G; Blanco D; Montuenga LM; van Ginneken B; Ortiz-de-Solorzano C; Muñoz-Barrutia A
    Phys Med Biol; 2009 Nov; 54(22):7009-24. PubMed ID: 19887716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of image-based method for extraction of coronary morphometry.
    Wischgoll T; Choy JS; Ritman EL; Kassab GS
    Ann Biomed Eng; 2008 Mar; 36(3):356-68. PubMed ID: 18228141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-pass region growing algorithm for segmenting airway tree from MDCT chest scans.
    Fabijańska A
    Comput Med Imaging Graph; 2009 Oct; 33(7):537-46. PubMed ID: 19473814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Method for Lung Boundary Correction Using Split Bregman Method and Geometric Active Contour Model.
    Feng C; Zhang J; Liang R
    Comput Math Methods Med; 2015; 2015():789485. PubMed ID: 26089976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.