BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 19056096)

  • 1. On the role of the monolignol gamma-carbon functionality in lignin biopolymerization.
    Holmgren A; Norgren M; Zhang L; Henriksson G
    Phytochemistry; 2009 Jan; 70(1):147-55. PubMed ID: 19056096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of a biologically relevant antioxidant on the dehydrogenative polymerization of coniferyl alcohol.
    Holmgren A; Henriksson G; Zhang L
    Biomacromolecules; 2008 Dec; 9(12):3378-82. PubMed ID: 18991457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of arabinoxylan-dehydrogenation polymer (synthetic lignin polymer) nanoparticles.
    Barakat A; Putaux JL; Saulnier L; Chabbert B; Cathala B
    Biomacromolecules; 2007 Apr; 8(4):1236-45. PubMed ID: 17341112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of reaction media concentration on the solubility and the chemical structure of lignin model compounds.
    Barakat A; Chabbert B; Cathala B
    Phytochemistry; 2007 Aug; 68(15):2118-25. PubMed ID: 17582447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins.
    Kishimoto T; Chiba W; Saito K; Fukushima K; Uraki Y; Ubukata M
    J Agric Food Chem; 2010 Jan; 58(2):895-901. PubMed ID: 20041658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of a specific lignin model: γ-oxidation and how it influences the hydrolysis efficiency of alcohol-aldehyde dehydrogenation copolymers.
    Bouxin F; Baumberger S; Renault JH; Dole P
    Bioresour Technol; 2011 May; 102(10):5567-73. PubMed ID: 21435863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin.
    Nakagame S; Chandra RP; Kadla JF; Saddler JN
    Biotechnol Bioeng; 2011 Mar; 108(3):538-48. PubMed ID: 21246506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monolignol acylation and lignin structure in some nonwoody plants: a 2D NMR study.
    Martínez AT; Rencoret J; Marques G; Gutiérrez A; Ibarra D; Jiménez-Barbero J; del Río JC
    Phytochemistry; 2008 Nov; 69(16):2831-43. PubMed ID: 18945458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-p-hydroxycinnamaldehydes: evolutionary implications.
    Jourdes M; Cardenas CL; Laskar DD; Moinuddin SG; Davin LB; Lewis NG
    Phytochemistry; 2007 Jul; 68(14):1932-56. PubMed ID: 17559892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignin chemistry: biosynthetic study and structural characterisation of coniferyl alcohol oligomers formed in vitro in a micellar environment.
    Reale S; Attanasio F; Spreti N; De Angelis F
    Chemistry; 2010 May; 16(20):6077-87. PubMed ID: 20397161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical synthesis of beta-O-4 type artificial lignin.
    Kishimoto T; Uraki Y; Ubukata M
    Org Biomol Chem; 2006 Apr; 4(7):1343-7. PubMed ID: 16557323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Easy synthesis of beta-O-4 type lignin related polymers.
    Kishimoto T; Uraki Y; Ubukata M
    Org Biomol Chem; 2005 Mar; 3(6):1067-73. PubMed ID: 15750650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of technical lignins by two- and three-dimensional NMR spectroscopy.
    Liitiä TM; Maunu SL; Hortling B; Toikka M; Kilpeläinen I
    J Agric Food Chem; 2003 Apr; 51(8):2136-43. PubMed ID: 12670147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic polymerization of coniferyl alcohol in the presence of cyclodextrins.
    Nakamura R; Matsushita Y; Umemoto K; Usuki A; Fukushima K
    Biomacromolecules; 2006 Jun; 7(6):1929-34. PubMed ID: 16768416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation during coniferyl alcohol polymerization in pectin solution: a biomimetic approach of the first steps of lignification.
    Lairez D; Cathala B; Monties B; Bedos-Belval F; Duran H; Gorrichon L
    Biomacromolecules; 2005; 6(2):763-74. PubMed ID: 15762640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-enzymatic reduction of quinone methides during oxidative coupling of monolignols: implications for the origin of benzyl structures in lignins.
    Holmgren A; Brunow G; Henriksson G; Zhang L; Ralph J
    Org Biomol Chem; 2006 Sep; 4(18):3456-61. PubMed ID: 17036140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperm lignins (and an indicator for cinnamoyl CoA reductase deficiency).
    Ralph J; Kim H; Lu F; Grabber JH; Leplé JC; Berrio-Sierra J; Derikvand MM; Jouanin L; Boerjan W; Lapierre C
    Plant J; 2008 Jan; 53(2):368-79. PubMed ID: 18184422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of beta-O-4-type artificial lignin polymers and their analysis by NMR spectroscopy.
    Kishimoto T; Uraki Y; Ubukata M
    Org Biomol Chem; 2008 Aug; 6(16):2982-7. PubMed ID: 18688492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apoplastic pH and monolignol addition rate effects on lignin formation and cell wall degradability in maize.
    Grabber JH; Hatfield RD; Ralph J
    J Agric Food Chem; 2003 Aug; 51(17):4984-9. PubMed ID: 12903957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of a serendipitously discovered bioactive macromolecule, lignin sulfate.
    Raghuraman A; Tiwari V; Thakkar JN; Gunnarsson GT; Shukla D; Hindle M; Desai UR
    Biomacromolecules; 2005; 6(5):2822-32. PubMed ID: 16153124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.