BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 19056254)

  • 1. Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres.
    Lee S; Chon H; Lee M; Choo J; Shin SY; Lee YH; Rhyu IJ; Son SW; Oh CH
    Biosens Bioelectron; 2009 Mar; 24(7):2260-3. PubMed ID: 19056254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods.
    Park H; Lee S; Chen L; Lee EK; Shin SY; Lee YH; Son SW; Oh CH; Song JM; Kang SH; Choo J
    Phys Chem Chem Phys; 2009 Sep; 11(34):7444-9. PubMed ID: 19690717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres.
    Chon H; Lee S; Son SW; Oh CH; Choo J
    Anal Chem; 2009 Apr; 81(8):3029-34. PubMed ID: 19301845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological imaging of HEK293 cells expressing PLCgamma1 using surface-enhanced Raman microscopy.
    Lee S; Kim S; Choo J; Shin SY; Lee YH; Choi HY; Ha S; Kang K; Oh CH
    Anal Chem; 2007 Feb; 79(3):916-22. PubMed ID: 17263316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.
    Lee S; Chon H; Lee J; Ko J; Chung BH; Lim DW; Choo J
    Biosens Bioelectron; 2014 Jan; 51():238-43. PubMed ID: 23973735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems.
    Matschulat A; Drescher D; Kneipp J
    ACS Nano; 2010 Jun; 4(6):3259-69. PubMed ID: 20503969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging.
    Lee M; Lee S; Lee JH; Lim HW; Seong GH; Lee EK; Chang SI; Oh CH; Choo J
    Biosens Bioelectron; 2011 Jan; 26(5):2135-41. PubMed ID: 20926277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles.
    Schwartzberg AM; Oshiro TY; Zhang JZ; Huser T; Talley CE
    Anal Chem; 2006 Jul; 78(13):4732-6. PubMed ID: 16808490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical probing of single cancer cells with gold nanoaggregates by surface-enhanced Raman scattering.
    Tang HW; Yang XB; Kirkham J; Smith DA
    Appl Spectrosc; 2008 Oct; 62(10):1060-9. PubMed ID: 18926013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal nanoshells.
    Hirsch LR; Gobin AM; Lowery AR; Tam F; Drezek RA; Halas NJ; West JL
    Ann Biomed Eng; 2006 Jan; 34(1):15-22. PubMed ID: 16528617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging.
    Zhan Q; Qian J; Li X; He S
    Nanotechnology; 2010 Feb; 21(5):055704. PubMed ID: 20023304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multilayer enhanced gold film over nanostructure surface-enhanced Raman substrates.
    Li H; Baum CE; Sun J; Cullum BM
    Appl Spectrosc; 2006 Dec; 60(12):1377-85. PubMed ID: 17217586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells.
    Kneipp K; Kneipp H; Kneipp J
    Acc Chem Res; 2006 Jul; 39(7):443-50. PubMed ID: 16846208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer.
    Xie HN; Larmour IA; Chen YC; Wark AW; Tileli V; McComb DW; Faulds K; Graham D
    Nanoscale; 2013 Jan; 5(2):765-71. PubMed ID: 23233034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of chitosan-coated gold nanoflowers as SERS-active probes.
    Xu D; Gu J; Wang W; Yu X; Xi K; Jia X
    Nanotechnology; 2010 Sep; 21(37):375101. PubMed ID: 20720293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid, solution-based characterization of optimized SERS nanoparticle substrates.
    Laurence TA; Braun G; Talley C; Schwartzberg A; Moskovits M; Reich N; Huser T
    J Am Chem Soc; 2009 Jan; 131(1):162-9. PubMed ID: 19063599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-mode optical projection tomography microscope using gold nanorods and hematoxylin-stained cancer cells.
    Miao Q; Yu J; Rahn JR; Meyer MG; Neumann T; Nelson AC; Seibel EJ
    Opt Lett; 2010 Apr; 35(7):1037-9. PubMed ID: 20364209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection.
    Maiti KK; Dinish US; Fu CY; Lee JJ; Soh KS; Yun SW; Bhuvaneswari R; Olivo M; Chang YT
    Biosens Bioelectron; 2010 Oct; 26(2):398-403. PubMed ID: 20801634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of silica-encapsulated hollow gold nanosphere tags using layer-by-layer method for multiplex surface-enhanced raman scattering detection.
    Huang J; Kim KH; Choi N; Chon H; Lee S; Choo J
    Langmuir; 2011 Aug; 27(16):10228-33. PubMed ID: 21702512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.