BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 19056255)

  • 1. Easily made single-walled carbon nanotube surface microelectrodes for neuronal applications.
    Gabriel G; Gómez R; Bongard M; Benito N; Fernández E; Villa R
    Biosens Bioelectron; 2009 Mar; 24(7):1942-8. PubMed ID: 19056255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.
    Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y
    Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical transport measurements of the side-contacts and embedded-end-contacts of platinum leads on the same single-walled carbon nanotube.
    Song X; Han X; Fu Q; Xu J; Wang N; Yu DP
    Nanotechnology; 2009 May; 20(19):195202. PubMed ID: 19420633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotube coating improves neuronal recordings.
    Keefer EW; Botterman BR; Romero MI; Rossi AF; Gross GW
    Nat Nanotechnol; 2008 Jul; 3(7):434-9. PubMed ID: 18654569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrodeposited polypyrrole/carbon nanotubes composite films electrodes for neural interfaces.
    Lu Y; Li T; Zhao X; Li M; Cao Y; Yang H; Duan YY
    Biomaterials; 2010 Jul; 31(19):5169-81. PubMed ID: 20382421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-walled carbon nanotubes deposited on surface electrodes to improve interface impedance.
    Gabriel G; Gómez-Martínez R; Villa R
    Physiol Meas; 2008 Jun; 29(6):S203-12. PubMed ID: 18544808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. D-fructose detection based on the direct heterogeneous electron transfer reaction of fructose dehydrogenase adsorbed onto multi-walled carbon nanotubes synthesized on platinum electrode.
    Tominaga M; Nomura S; Taniguchi I
    Biosens Bioelectron; 2009 Jan; 24(5):1184-8. PubMed ID: 18707862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low potential detection of glutamate based on the electrocatalytic oxidation of NADH at thionine/single-walled carbon nanotubes composite modified electrode.
    Meng L; Wu P; Chen G; Cai C; Sun Y; Yuan Z
    Biosens Bioelectron; 2009 Feb; 24(6):1751-6. PubMed ID: 18945610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An active, flexible carbon nanotube microelectrode array for recording electrocorticograms.
    Chen YC; Hsu HL; Lee YT; Su HC; Yen SJ; Chen CH; Hsu WL; Yew TR; Yeh SR; Yao DJ; Chang YC; Chen H
    J Neural Eng; 2011 Jun; 8(3):034001. PubMed ID: 21474876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single carbon fiber microelectrode with branching carbon nanotubes for bioelectrochemical processes.
    Zhao X; Lu X; Tze WT; Wang P
    Biosens Bioelectron; 2010 Jun; 25(10):2343-50. PubMed ID: 20418089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode.
    Ye Y; Ju H
    Biosens Bioelectron; 2005 Nov; 21(5):735-41. PubMed ID: 16242612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically active single-walled carbon nanotubes.
    Peng X; Komatsu N; Bhattacharya S; Shimawaki T; Aonuma S; Kimura T; Osuka A
    Nat Nanotechnol; 2007 Jun; 2(6):361-5. PubMed ID: 18654308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dispersion conditions of single-walled carbon nanotubes on the electrical characteristics of thin film network transistors.
    Barman SN; LeMieux MC; Baek J; Rivera R; Bao Z
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2672-8. PubMed ID: 20738099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of retinal ganglion cells following epiretinal electrical stimulation with hexagonally arranged bipolar electrodes.
    Abramian M; Lovell NH; Morley JW; Suaning GJ; Dokos S
    J Neural Eng; 2011 Jun; 8(3):035004. PubMed ID: 21593545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ detection of chromogranin a released from living neurons with a single-walled carbon-nanotube field-effect transistor.
    Wang CW; Pan CY; Wu HC; Shih PY; Tsai CC; Liao KT; Lu LL; Hsieh WH; Chen CD; Chen YT
    Small; 2007 Aug; 3(8):1350-5. PubMed ID: 17576645
    [No Abstract]   [Full Text] [Related]  

  • 16. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ionic liquid supported CeO2 nanoshuttles-carbon nanotubes composite as a platform for impedance DNA hybridization sensing.
    Zhang W; Yang T; Zhuang X; Guo Z; Jiao K
    Biosens Bioelectron; 2009 Apr; 24(8):2417-22. PubMed ID: 19167208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays.
    Sekirnjak C; Hottowy P; Sher A; Dabrowski W; Litke AM; Chichilnisky EJ
    J Neurophysiol; 2006 Jun; 95(6):3311-27. PubMed ID: 16436479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cone-shaped 3D carbon nanotube probe for neural recording.
    Su HC; Lin CM; Yen SJ; Chen YC; Chen CH; Yeh SR; Fang W; Chen H; Yao DJ; Chang YC; Yew TR
    Biosens Bioelectron; 2010 Sep; 26(1):220-7. PubMed ID: 20685101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-terminal nonvolatile memories based on single-walled carbon nanotubes.
    Yao J; Jin Z; Zhong L; Natelson D; Tour JM
    ACS Nano; 2009 Dec; 3(12):4122-6. PubMed ID: 19904998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.