These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 1905645)

  • 1. Reactivation of metal-requiring apoenzymes by phytochelatin-metal complexes.
    Thumann J; Grill E; Winnacker EL; Zenk MH
    FEBS Lett; 1991 Jun; 284(1):66-9. PubMed ID: 1905645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivation in vitro of zinc-requiring apo-enzymes by rat liver zinc-thionein.
    Udom AO; Brady FO
    Biochem J; 1980 May; 187(2):329-35. PubMed ID: 6772158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues.
    Hunt JA; Ahmed M; Fierke CA
    Biochemistry; 1999 Jul; 38(28):9054-62. PubMed ID: 10413479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calorimetric biosensing of heavy metal ions with the reactors containing the immobilized apoenzymes.
    Satoh I
    Ann N Y Acad Sci; 1990; 613():401-4. PubMed ID: 2127519
    [No Abstract]   [Full Text] [Related]  

  • 5. Ligand substitution reactions of metallothioneins with EDTA and apo-carbonic anhydrase.
    Li TY; Kraker AJ; Shaw CF; Petering DH
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6334-8. PubMed ID: 6779278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination chemical studies on metalloenzymes. Kinetics and mechanism of the Zn(II) exchange reaction between chelating agent and apo-bovine carbonic anhydrase.
    Kidani Y; Hirose J; Koike H
    J Biochem; 1976 Jan; 79(1):43-51. PubMed ID: 820693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The reaction mechanism of copper amine oxidase: detection of intermediates by the use of substrates and inhibitors.
    Medda R; Padiglia A; Pedersen JZ; Rotilio G; Finazzi Agrò A; Floris G
    Biochemistry; 1995 Dec; 34(50):16375-81. PubMed ID: 8845363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of the metal ion in the refolding of denatured bovine Co(II)-carbonic anhydrase II.
    Bergenhem N; Carlsson U
    Biochim Biophys Acta; 1989 Oct; 998(3):277-85. PubMed ID: 2508759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc(II) and cobalt(II) bovine carbonic anhydrases. Comparative studies and esterase activity.
    Pocker Y; Bjorkquist L; Bjorkquist DW
    Biochemistry; 1977 Sep; 16(18):3967-73. PubMed ID: 20924
    [No Abstract]   [Full Text] [Related]  

  • 10. On the lack of specificity of the cobalt-bicarbonate method for carbonic anhydrase.
    Muther TF
    J Histochem Cytochem; 1977 Sep; 25(9):1043-50. PubMed ID: 71324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CuI-semiquinone radical species in plant copper-amine oxidases.
    Medda R; Padiglia A; Bellelli A; Pedersen JZ; Agrò AF; Floris G
    FEBS Lett; 1999 Jun; 453(1-2):1-5. PubMed ID: 10403363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and mechanism of dissociation of zinc ion from carbonic anhydrase.
    Romans AY; Graichen ME; Lochmüller CH; Henkens RW
    Bioinorg Chem; 1978 Sep; 9(3):217-29. PubMed ID: 29669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II.
    Huang CC; Lesburg CA; Kiefer LL; Fierke CA; Christianson DW
    Biochemistry; 1996 Mar; 35(11):3439-46. PubMed ID: 8639494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron paramagnetic resonance studies of the structure and metal ion exchange kinetics of vanadyl(IV) bovine carbonic anhydrase.
    Fitzgerald JJ; Chasteen ND
    Biochemistry; 1974 Oct; 13(21):4338-47. PubMed ID: 4369983
    [No Abstract]   [Full Text] [Related]  

  • 15. Metal-deficient copper-zinc superoxide dismutases.
    Jewett SL; Latrenta GS; Beck CM
    Arch Biochem Biophys; 1982 Apr; 215(1):116-28. PubMed ID: 7092220
    [No Abstract]   [Full Text] [Related]  

  • 16. One hundred fold increased activity of Aeromonas aminopeptidase by sequential substitutions with Ni(II) or Cu(II) followed by zinc.
    Prescott JM; Wagner FW; Holmquist B; Vallee BL
    Biochem Biophys Res Commun; 1983 Jul; 114(2):646-52. PubMed ID: 6882446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic properties and inhibition of Cd2+-carbonic anhydrases.
    Tibell L; Lindskog S
    Biochim Biophys Acta; 1984 Jul; 788(1):110-6. PubMed ID: 6430343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of lead ions with bovine carbonic anhydrase.
    Mailer K; Calhoun LA; Livesey DL
    Int J Pept Protein Res; 1982 Mar; 19(3):233-9. PubMed ID: 6811467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic studies of pea carbonic anhydrase.
    Johansson IM; Forsman C
    Eur J Biochem; 1993 Dec; 218(2):439-46. PubMed ID: 8269932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivation of kinetics of guanidine denatured bovine carbonic anhydrase B.
    Ikai A; Tanaka S; Noda H
    Arch Biochem Biophys; 1978 Sep; 190(1):39-45. PubMed ID: 101152
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.