These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19056460)

  • 1. Modelling of phytoplankton allelopathy with Monod-Haldane-type functional response--a mathematical study.
    Pal R; Basu D; Banerjee M
    Biosystems; 2009 Mar; 95(3):243-53. PubMed ID: 19056460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of toxin and nutrient for the occurrence and termination of plankton bloom--results drawn from field observations and a mathematical model.
    Pal S; Chatterjee S; Chattopadhyay J
    Biosystems; 2007; 90(1):87-100. PubMed ID: 17194523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A delay differential equation model on harmful algal blooms in the presence of toxic substances.
    Chattopadhyay J; Sarkar RR; El Abdllaoui A
    IMA J Math Appl Med Biol; 2002 Jun; 19(2):137-61. PubMed ID: 12630776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of two toxin-producing plankton and their effect on phytoplankton-zooplankton system--a mathematical study supported by experimental findings.
    Sarkar RR; Pal S; Chattopadhyay J
    Biosystems; 2005 Apr; 80(1):11-23. PubMed ID: 15740831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of Holling type III zooplankton functional response: bringing together field evidence and mathematical modelling.
    Morozov AY
    J Theor Biol; 2010 Jul; 265(1):45-54. PubMed ID: 20406647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability analysis and Hopf bifurcation of a fractional order mathematical model with time delay for nutrient-phytoplankton-zooplankton.
    Shi RQ; Ren JN; Wang CH
    Math Biosci Eng; 2020 May; 17(4):3836-3868. PubMed ID: 32987557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity-mediated regime shifts in a contaminated nutrient-plankton system.
    Mandal A; Biswas S; Pal S
    Chaos; 2023 Feb; 33(2):023106. PubMed ID: 36859222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bottom-up excitable models of phytoplankton blooms.
    Huppert A; Olinky R; Stone L
    Bull Math Biol; 2004 Jul; 66(4):865-78. PubMed ID: 15210323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competing effects of toxin-producing phytoplankton on overall plankton populations in the bay of Bengal.
    Roy S; Alam S; Chattopadhyay J
    Bull Math Biol; 2006 Nov; 68(8):2303-20. PubMed ID: 16804650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of virus infection in a simple phytoplankton zooplankton system.
    Singh BK; Chattopadhyay J; Sinha S
    J Theor Biol; 2004 Nov; 231(2):153-66. PubMed ID: 15380380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of biocomplexity in an aquatic ecosystem through ascendency.
    Mandal S; Ray S; Roy SK
    Biosystems; 2009 Jan; 95(1):30-4. PubMed ID: 18639609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillations in plankton models with nutrient recycling.
    Ruan S
    J Theor Biol; 2001 Jan; 208(1):15-26. PubMed ID: 11162049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of nanoparticles on plankton dynamics: a mathematical model.
    Rana S; Samanta S; Bhattacharya S; Al-Khaled K; Goswami A; Chattopadhyay J
    Biosystems; 2015 Jan; 127():28-41. PubMed ID: 25448892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability and Hopf bifurcation analysis of a delayed phytoplankton-zooplankton model with Allee effect and linear harvesting.
    Meng XY; Li J
    Math Biosci Eng; 2019 Dec; 17(3):1973-2002. PubMed ID: 32233519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phytoplankton-zooplankton-fish model with chaos control: In the presence of fear effect and an additional food.
    Sajan ; Sasmal SK; Dubey B
    Chaos; 2022 Jan; 32(1):013114. PubMed ID: 35105117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patchy agglomeration as a transition from monospecies to recurrent plankton blooms.
    Chattopadhyay J; Chatterjee S; Venturino E
    J Theor Biol; 2008 Jul; 253(2):289-95. PubMed ID: 18456283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive evolution of phytoplankton cell size.
    Jiang L; Schofield OM; Falkowski PG
    Am Nat; 2005 Oct; 166(4):496-505. PubMed ID: 16224705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical analysis of a toxin-producing phytoplankton-zooplankton model with refuge.
    Li J; Song Y; Wan H
    Math Biosci Eng; 2017 Apr; 14(2):529-557. PubMed ID: 27879113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global Hopf bifurcation of a delayed phytoplankton-zooplankton system considering toxin producing effect and delay dependent coefficient.
    Jiang ZC; Bi XH; Zhang TQ; Pradeep BGSA
    Math Biosci Eng; 2019 Apr; 16(5):3807-3829. PubMed ID: 31499637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards a correct description of zooplankton feeding in models: taking into account food-mediated unsynchronized vertical migration.
    Morozov AY; Arashkevich EG
    J Theor Biol; 2010 Jan; 262(2):346-60. PubMed ID: 19782091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.