These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 19056903)

  • 1. Near neutrality, rate heterogeneity, and linkage govern mitochondrial genome evolution in Atlantic cod (Gadus morhua) and other gadine fish.
    Marshall HD; Coulson MW; Carr SM
    Mol Biol Evol; 2009 Mar; 26(3):579-89. PubMed ID: 19056903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complete mitochondrial genome of the whiting, Merlangius merlangus and the haddock, Melanogrammus aeglefinus: a detailed genomic comparison among closely related species of the Gadidae family.
    Roques S; Fox CJ; Villasana MI; Rico C
    Gene; 2006 Nov; 383():12-23. PubMed ID: 16996701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for positive selection at the pantophysin (Pan I) locus in walleye pollock, Theragra chalcogramma.
    Canino MF; Bentzen P
    Mol Biol Evol; 2004 Jul; 21(7):1391-400. PubMed ID: 15084678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogeographic analysis of complete mtDNA genomes from Walleye Pollock (Gadus chalcogrammus Pallas, 1811) shows an ancient origin of genetic biodiversity.
    Carr SM; Marshall HD
    Mitochondrial DNA; 2008 Dec; 19(6):490-6. PubMed ID: 19489135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale sequence analyses of Atlantic cod.
    Johansen SD; Coucheron DH; Andreassen M; Karlsen BO; Furmanek T; Jørgensen TE; Emblem A; Breines R; Nordeide JT; Moum T; Nederbragt AJ; Stenseth NC; Jakobsen KS
    N Biotechnol; 2009 Jun; 25(5):263-71. PubMed ID: 19491044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of microsatellite hitch-hiking selection in Atlantic cod (Gadus morhua L.): implications for inferring population structure in nonmodel organisms.
    Nielsen EE; Hansen MM; Meldrup D
    Mol Ecol; 2006 Oct; 15(11):3219-29. PubMed ID: 16968266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete mitochondrial genomes from four subspecies of common chaffinch (Fringilla coelebs): new inferences about mitochondrial rate heterogeneity, neutral theory, and phylogenetic relationships within the order Passeriformes.
    Marshall HD; Baker AJ; Grant AR
    Gene; 2013 Mar; 517(1):37-45. PubMed ID: 23313296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial covariation of mutation and nonsynonymous substitution rates in vertebrate mitochondrial genomes.
    Broughton RE; Reneau PC
    Mol Biol Evol; 2006 Aug; 23(8):1516-24. PubMed ID: 16705079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial genomics of gadine fishes: implications for taxonomy and biogeographic origins from whole-genome data sets.
    Coulson MW; Marshall HD; Pepin P; Carr SM
    Genome; 2006 Sep; 49(9):1115-30. PubMed ID: 17110992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positive Darwinian selection at the pantophysin (Pan I) locus in marine gadid fishes.
    Pogson GH; Mesa KA
    Mol Biol Evol; 2004 Jan; 21(1):65-75. PubMed ID: 12949133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Atlantic cod (Gadus morhua), ling (Molva molva), and Alaska pollock (Gadus chalcogrammus) by PCR-ELISA using duplex PCR.
    Taboada L; Sánchez A; Velasco A; Santaclara FJ; Pérez-Martín RI; Sotelo CG
    J Agric Food Chem; 2014 Jun; 62(24):5699-706. PubMed ID: 24856866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SNP/microsatellite genetic linkage map of the Atlantic cod (Gadus morhua).
    Moen T; Delghandi M; Wesmajervi MS; Westgaard JI; Fjalestad KT
    Anim Genet; 2009 Dec; 40(6):993-6. PubMed ID: 19694651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The roles of positive and negative selection in the molecular evolution of insect endosymbionts.
    Fry AJ; Wernegreen JJ
    Gene; 2005 Aug; 355():1-10. PubMed ID: 16039807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitogenome sequence variation in migratory and stationary ecotypes of North-east Atlantic cod.
    Karlsen BO; Emblem Å; Jørgensen TE; Klingan KA; Nordeide JT; Moum T; Johansen SD
    Mar Genomics; 2014 Jun; 15():103-8. PubMed ID: 24456931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in mutation rate and polymorphism among mitochondrial genes of Silene vulgaris.
    Barr CM; Keller SR; Ingvarsson PK; Sloan DB; Taylor DR
    Mol Biol Evol; 2007 Aug; 24(8):1783-91. PubMed ID: 17533174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex dimorphic expression of five dmrt genes identified in the Atlantic cod genome. The fish-specific dmrt2b diverged from dmrt2a before the fish whole-genome duplication.
    Johnsen H; Andersen Ø
    Gene; 2012 Sep; 505(2):221-32. PubMed ID: 22749781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complete mitochondrial DNA sequence of Atlantic cod (Gadus morhua): relevance to taxonomic studies among codfishes.
    Johansen S; Bakke I
    Mol Mar Biol Biotechnol; 1996 Sep; 5(3):203-14. PubMed ID: 8817926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a tRNA-Glu-cytochrome b key for the molecular identification of 12 hake species (Merluccius spp.) and Atlantic Cod (Gadus morhua) using PCR-RFLPs, FINS, and BLAST.
    Pérez M; Presa P
    J Agric Food Chem; 2008 Nov; 56(22):10865-71. PubMed ID: 18950183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional connectivity of marine fishes within a semi-enclosed Newfoundland fjord.
    Bradbury IR; Snelgrove PV; Bentzen P; de Young B; Gregory RS; Morris CJ
    J Fish Biol; 2009 Oct; 75(6):1393-409. PubMed ID: 20738621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly localized divergence within supergenes in Atlantic cod (Gadus morhua) within the Gulf of Maine.
    Barney BT; Munkholm C; Walt DR; Palumbi SR
    BMC Genomics; 2017 Mar; 18(1):271. PubMed ID: 28359300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.