BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1816 related articles for article (PubMed ID: 19056941)

  • 41. Nucleosomal structures of c-myc promoters with transcriptionally engaged RNA polymerase II.
    Albert T; Mautner J; Funk JO; Hörtnagel K; Pullner A; Eick D
    Mol Cell Biol; 1997 Aug; 17(8):4363-71. PubMed ID: 9234694
    [TBL] [Abstract][Full Text] [Related]  

  • 42. microTSS: accurate microRNA transcription start site identification reveals a significant number of divergent pri-miRNAs.
    Georgakilas G; Vlachos IS; Paraskevopoulou MD; Yang P; Zhang Y; Economides AN; Hatzigeorgiou AG
    Nat Commun; 2014 Dec; 5():5700. PubMed ID: 25492647
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Overlapping transcription by RNA polymerases II and III of the Xenopus TFIIIA gene in somatic cells.
    Martinez E; Lagna G; Roeder RG
    J Biol Chem; 1994 Oct; 269(41):25692-8. PubMed ID: 7929274
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The RNA polymerase II core promoter - the gateway to transcription.
    Juven-Gershon T; Hsu JY; Theisen JW; Kadonaga JT
    Curr Opin Cell Biol; 2008 Jun; 20(3):253-9. PubMed ID: 18436437
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relative efficiency of utilization of promoter and termination sites by bacteriophage T3 RNA polymerase.
    Sengupta D; Chakravarti D; Maitra U
    J Biol Chem; 1989 Aug; 264(24):14246-55. PubMed ID: 2547791
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nascent RNA sequencing identifies a widespread sigma70-dependent pausing regulated by Gre factors in bacteria.
    Sun Z; Yakhnin AV; FitzGerald PC; Mclntosh CE; Kashlev M
    Nat Commun; 2021 Feb; 12(1):906. PubMed ID: 33568644
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing.
    Nojima T; Gomes T; Grosso ARF; Kimura H; Dye MJ; Dhir S; Carmo-Fonseca M; Proudfoot NJ
    Cell; 2015 Apr; 161(3):526-540. PubMed ID: 25910207
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Integrator Complex Attenuates Promoter-Proximal Transcription at Protein-Coding Genes.
    Elrod ND; Henriques T; Huang KL; Tatomer DC; Wilusz JE; Wagner EJ; Adelman K
    Mol Cell; 2019 Dec; 76(5):738-752.e7. PubMed ID: 31809743
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation.
    Krumm A; Hickey LB; Groudine M
    Genes Dev; 1995 Mar; 9(5):559-72. PubMed ID: 7698646
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RNA Pol II transcription model and interpretation of GRO-seq data.
    Lladser ME; Azofeifa JG; Allen MA; Dowell RD
    J Math Biol; 2017 Jan; 74(1-2):77-97. PubMed ID: 27142882
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alternative DNA secondary structure formation affects RNA polymerase II promoter-proximal pausing in human.
    Szlachta K; Thys RG; Atkin ND; Pierce LCT; Bekiranov S; Wang YH
    Genome Biol; 2018 Jul; 19(1):89. PubMed ID: 30001206
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Diversity of core promoter elements comprising human bidirectional promoters.
    Yang MQ; Elnitski LL
    BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S3. PubMed ID: 18831794
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo.
    Imashimizu M; Takahashi H; Oshima T; McIntosh C; Bubunenko M; Court DL; Kashlev M
    Genome Biol; 2015 May; 16(1):98. PubMed ID: 25976475
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types.
    Day DS; Zhang B; Stevens SM; Ferrari F; Larschan EN; Park PJ; Pu WT
    Genome Biol; 2016 Jun; 17(1):120. PubMed ID: 27259512
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila.
    Nechaev S; Fargo DC; dos Santos G; Liu L; Gao Y; Adelman K
    Science; 2010 Jan; 327(5963):335-8. PubMed ID: 20007866
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proteasome inhibition creates a chromatin landscape favorable to RNA Pol II processivity.
    Kinyamu HK; Bennett BD; Bushel PR; Archer TK
    J Biol Chem; 2020 Jan; 295(5):1271-1287. PubMed ID: 31806706
    [TBL] [Abstract][Full Text] [Related]  

  • 57. G4 motifs correlate with promoter-proximal transcriptional pausing in human genes.
    Eddy J; Vallur AC; Varma S; Liu H; Reinhold WC; Pommier Y; Maizels N
    Nucleic Acids Res; 2011 Jul; 39(12):4975-83. PubMed ID: 21371997
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human promoters are intrinsically directional.
    Duttke SHC; Lacadie SA; Ibrahim MM; Glass CK; Corcoran DL; Benner C; Heinz S; Kadonaga JT; Ohler U
    Mol Cell; 2015 Feb; 57(4):674-684. PubMed ID: 25639469
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Immediate transcriptional responses of Arabidopsis leaves to heat shock.
    Liu M; Zhu J; Dong Z
    J Integr Plant Biol; 2021 Mar; 63(3):468-483. PubMed ID: 32644278
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNA polymerase plays both sides: vivid and bidirectional transcription around and upstream of active promoters.
    Preker P; Nielsen J; Schierup MH; Jensen TH
    Cell Cycle; 2009 Apr; 8(8):1106-7. PubMed ID: 19305135
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 91.