BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1816 related articles for article (PubMed ID: 19056941)

  • 61. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing.
    Izban MG; Luse DS
    Genes Dev; 1991 Apr; 5(4):683-96. PubMed ID: 2010092
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution.
    Mayer A; di Iulio J; Maleri S; Eser U; Vierstra J; Reynolds A; Sandstrom R; Stamatoyannopoulos JA; Churchman LS
    Cell; 2015 Apr; 161(3):541-554. PubMed ID: 25910208
    [TBL] [Abstract][Full Text] [Related]  

  • 63. TT-seq maps the human transient transcriptome.
    Schwalb B; Michel M; Zacher B; Frühauf K; Demel C; Tresch A; Gagneur J; Cramer P
    Science; 2016 Jun; 352(6290):1225-8. PubMed ID: 27257258
    [TBL] [Abstract][Full Text] [Related]  

  • 64. XACT-Seq Comprehensively Defines the Promoter-Position and Promoter-Sequence Determinants for Initial-Transcription Pausing.
    Winkelman JT; Pukhrambam C; Vvedenskaya IO; Zhang Y; Taylor DM; Shah P; Ebright RH; Nickels BE
    Mol Cell; 2020 Sep; 79(5):797-811.e8. PubMed ID: 32750314
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Promoter sequences of eukaryotic protein-coding genes.
    Corden J; Wasylyk B; Buchwalder A; Sassone-Corsi P; Kedinger C; Chambon P
    Science; 1980 Sep; 209(4463):1406-14. PubMed ID: 6251548
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An antisense transcript from within the ptsG promoter region in Escherichia coli.
    Pennetier C; Oberto J; Plumbridge J
    J Mol Microbiol Biotechnol; 2010; 18(4):230-40. PubMed ID: 20668389
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Interactions of the RNA polymerase of bacteriophage T7 with its promoter during binding and initiation of transcription.
    Ikeda RA; Richardson CC
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3614-8. PubMed ID: 3459146
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nascent transcription affected by RNA polymerase IV in Zea mays.
    Erhard KF; Talbot JE; Deans NC; McClish AE; Hollick JB
    Genetics; 2015 Apr; 199(4):1107-25. PubMed ID: 25653306
    [TBL] [Abstract][Full Text] [Related]  

  • 69. High-Resolution Deep Sequencing of Nascent Transcription in Yeast with BioGRO-seq.
    Jordán-Pla A; Pérez-Ortín JE
    Methods Mol Biol; 2022; 2477():57-70. PubMed ID: 35524111
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mapping of RNA polymerase on mammalian genes in cells and nuclei.
    Mirkovitch J; Darnell JE
    Mol Biol Cell; 1992 Oct; 3(10):1085-94. PubMed ID: 1384813
    [TBL] [Abstract][Full Text] [Related]  

  • 71. CDK9-dependent RNA polymerase II pausing controls transcription initiation.
    Gressel S; Schwalb B; Decker TM; Qin W; Leonhardt H; Eick D; Cramer P
    Elife; 2017 Oct; 6():. PubMed ID: 28994650
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Contrasting expression patterns of coding and noncoding parts of the human genome upon oxidative stress.
    Giannakakis A; Zhang J; Jenjaroenpun P; Nama S; Zainolabidin N; Aau MY; Yarmishyn AA; Vaz C; Ivshina AV; Grinchuk OV; Voorhoeve M; Vardy LA; Sampath P; Kuznetsov VA; Kurochkin IV; Guccione E
    Sci Rep; 2015 May; 5():9737. PubMed ID: 26024509
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A common octamer motif binding protein is involved in the transcription of U6 snRNA by RNA polymerase III and U2 snRNA by RNA polymerase II.
    Carbon P; Murgo S; Ebel JP; Krol A; Tebb G; Mattaj LW
    Cell; 1987 Oct; 51(1):71-9. PubMed ID: 3652209
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes.
    Vuthoori S; Bowers CW; McCracken A; Dombroski AJ; Hinton DM
    J Mol Biol; 2001 Jun; 309(3):561-72. PubMed ID: 11397080
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Herpes Simplex Virus 1 Dramatically Alters Loading and Positioning of RNA Polymerase II on Host Genes Early in Infection.
    Birkenheuer CH; Danko CG; Baines JD
    J Virol; 2018 Apr; 92(8):. PubMed ID: 29437966
    [TBL] [Abstract][Full Text] [Related]  

  • 76. σ38-dependent promoter-proximal pausing by bacterial RNA polymerase.
    Petushkov I; Esyunina D; Kulbachinskiy A
    Nucleic Acids Res; 2017 Apr; 45(6):3006-3016. PubMed ID: 27928053
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transcriptional regulation: effects of promoter proximal pausing on speed, synchrony and reliability.
    Boettiger AN; Ralph PL; Evans SN
    PLoS Comput Biol; 2011 May; 7(5):e1001136. PubMed ID: 21589887
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Divergent RNA transcription: a role in promoter unwinding?
    Naughton C; Corless S; Gilbert N
    Transcription; 2013; 4(4):162-6. PubMed ID: 23863199
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Prevalence of RNA polymerase stalling at Escherichia coli promoters after open complex formation.
    Hatoum A; Roberts J
    Mol Microbiol; 2008 Apr; 68(1):17-28. PubMed ID: 18333883
    [TBL] [Abstract][Full Text] [Related]  

  • 80. RNA polymerase II pauses in vitro, but does not terminate, at discrete sites in promoter-proximal regions on polyomavirus transcription complexes.
    Skarnes WC; Acheson NH
    Virology; 1991 May; 182(1):54-60. PubMed ID: 1850913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 91.