These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 19057205)

  • 1. Giant cell formation and function.
    Brodbeck WG; Anderson JM
    Curr Opin Hematol; 2009 Jan; 16(1):53-7. PubMed ID: 19057205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrophage fusion and multinucleated giant cells of inflammation.
    McNally AK; Anderson JM
    Adv Exp Med Biol; 2011; 713():97-111. PubMed ID: 21432016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monocyte-Macrophage Lineage Cell Fusion.
    Kloc M; Subuddhi A; Uosef A; Kubiak JZ; Ghobrial RM
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multinucleated giant cells.
    Anderson JM
    Curr Opin Hematol; 2000 Jan; 7(1):40-7. PubMed ID: 10608503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation of mononucleated precursors triggers cell surface expression of alphavbeta3 integrin, essential to formation of osteoclast-like multinucleated cells.
    Boissy P; Machuca I; Pfaff M; Ficheux D; Jurdic P
    J Cell Sci; 1998 Sep; 111 ( Pt 17)():2563-74. PubMed ID: 9701555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanotransduction via a TRPV4-Rac1 signaling axis plays a role in multinucleated giant cell formation.
    Arya RK; Goswami R; Rahaman SO
    J Biol Chem; 2021; 296():100129. PubMed ID: 33262217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of DC-STAMP in cellular fusion of osteoclasts and macrophage giant cells.
    Yagi M; Miyamoto T; Toyama Y; Suda T
    J Bone Miner Metab; 2006; 24(5):355-8. PubMed ID: 16937266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequent upregulation of cyclin D1 and p16 expression with low Ki-67 scores in multinucleated giant cells.
    Choi JW; Lee JH; Kim YS
    Pathobiology; 2011; 78(4):233-7. PubMed ID: 21778791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The molecular basis of macrophage fusion.
    Helming L; Gordon S
    Immunobiology; 2007; 212(9-10):785-93. PubMed ID: 18086379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of DC-STAMP by alternative activation and downstream signaling mechanisms.
    Yagi M; Ninomiya K; Fujita N; Suzuki T; Iwasaki R; Morita K; Hosogane N; Matsuo K; Toyama Y; Suda T; Miyamoto T
    J Bone Miner Res; 2007 Jul; 22(7):992-1001. PubMed ID: 17402846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macrophage fusion: the making of osteoclasts and giant cells.
    Vignery A
    J Exp Med; 2005 Aug; 202(3):337-40. PubMed ID: 16061722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macrophage fusion, giant cell formation, and the foreign body response require matrix metalloproteinase 9.
    MacLauchlan S; Skokos EA; Meznarich N; Zhu DH; Raoof S; Shipley JM; Senior RM; Bornstein P; Kyriakides TR
    J Leukoc Biol; 2009 Apr; 85(4):617-26. PubMed ID: 19141565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoclasts and giant cells: macrophage-macrophage fusion mechanism.
    Vignery A
    Int J Exp Pathol; 2000 Oct; 81(5):291-304. PubMed ID: 11168677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor necrosis factor receptor-associated factor 6 is required to inhibit foreign body giant cell formation and activate osteoclasts under inflammatory and infectious conditions.
    Oya A; Katsuyama E; Morita M; Sato Y; Kobayashi T; Miyamoto K; Nishiwaki T; Funayama A; Fujita Y; Kobayashi T; Matsumoto M; Nakamura M; Kanaji A; Miyamoto T
    J Bone Miner Metab; 2018 Nov; 36(6):679-690. PubMed ID: 29273889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells.
    Yagi M; Miyamoto T; Sawatani Y; Iwamoto K; Hosogane N; Fujita N; Morita K; Ninomiya K; Suzuki T; Miyamoto K; Oike Y; Takeya M; Toyama Y; Suda T
    J Exp Med; 2005 Aug; 202(3):345-51. PubMed ID: 16061724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blockade of the pore-forming P2X7 receptor inhibits formation of multinucleated human osteoclasts in vitro.
    Gartland A; Buckley KA; Bowler WB; Gallagher JA
    Calcif Tissue Int; 2003 Oct; 73(4):361-9. PubMed ID: 12874700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common signalling pathways in macrophage and osteoclast multinucleation.
    Pereira M; Petretto E; Gordon S; Bassett JHD; Williams GR; Behmoaras J
    J Cell Sci; 2018 Jun; 131(11):. PubMed ID: 29871956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular mechanisms of osteoclast formation and lacunar resorption in giant cell granuloma of the jaw.
    Itonaga I; Hussein I; Kudo O; Sabokbar A; Watt-Smith S; Ferguson D; Athanasou NA
    J Oral Pathol Med; 2003 Apr; 32(4):224-31. PubMed ID: 12653862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of NADPH oxidase in formation and function of multinucleated giant cells.
    Quinn MT; Schepetkin IA
    J Innate Immun; 2009; 1(6):509-26. PubMed ID: 20375608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of multinucleated giant cells by microstructures of hydroxyapatite and plasma components in extraskeletal implantation model.
    Morishita K; Tatsukawa E; Shibata Y; Suehiro F; Kamitakahara M; Yokoi T; Ioku K; Umeda M; Nishimura M; Ikeda T
    Acta Biomater; 2016 Jul; 39():180-191. PubMed ID: 27154501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.