These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 19057591)

  • 1. Giant negative thermal expansion in magnetic nanocrystals.
    Zheng XG; Kubozono H; Yamada H; Kato K; Ishiwata Y; Xu CN
    Nat Nanotechnol; 2008 Dec; 3(12):724-6. PubMed ID: 19057591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6].
    Goodwin AL; Calleja M; Conterio MJ; Dove MT; Evans JS; Keen DA; Peters L; Tucker MG
    Science; 2008 Feb; 319(5864):794-7. PubMed ID: 18258911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Argentophilicity-dependent colossal thermal expansion in extended prussian blue analogues.
    Goodwin AL; Keen DA; Tucker MG; Dove MT; Peters L; Evans JS
    J Am Chem Soc; 2008 Jul; 130(30):9660-1. PubMed ID: 18597466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zero thermal expansion in YbGaGe due to an electronic valence transition.
    Salvador JR; Guo F; Hogan T; Kanatzidis MG
    Nature; 2003 Oct; 425(6959):702-5. PubMed ID: 14562099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative lattice expansion from the superconductivity--antiferromagnetism crossover in ruthenium copper oxides.
    McLaughlin AC; Sher F; Attfield JP
    Nature; 2005 Aug; 436(7052):829-32. PubMed ID: 16094364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guest-dependent negative thermal expansion in nanoporous prussian blue analogues M(II)Pt(IV)(CN)6.x{H2O} (0 < or = x < or = 2; M = Zn, Cd).
    Goodwin AL; Chapman KW; Kepert CJ
    J Am Chem Soc; 2005 Dec; 127(51):17980-1. PubMed ID: 16366530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of metallophilicity on "colossal" positive and negative thermal expansion in a series of isostructural dicyanometallate coordination polymers.
    Korcok JL; Katz MJ; Leznoff DB
    J Am Chem Soc; 2009 Apr; 131(13):4866-71. PubMed ID: 19290631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural behaviour of synthetic Co2SiO4 at low temperatures.
    Sazonov A; Meven M; Hutanu V; Kaiser V; Heger G; Trots D; Merz M
    Acta Crystallogr B; 2008 Dec; 64(Pt 6):661-8. PubMed ID: 19029695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-induced valence transition and associated lattice collapse in samarium fulleride.
    Arvanitidis J; Papagelis K; Margadonna S; Prassides K; Fitch AN
    Nature; 2003 Oct; 425(6958):599-602. PubMed ID: 14534581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal expansion matching via framework flexibility in zinc dicyanometallates.
    Goodwin AL; Kennedy BJ; Kepert CJ
    J Am Chem Soc; 2009 May; 131(18):6334-5. PubMed ID: 19385622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An X-ray diffraction and MAS NMR study of the thermal expansion properties of calcined siliceous ferrierite.
    Bull I; Lightfoot P; Villaescusa LA; Bull LM; Gover RK; Evans JS; Morris RE
    J Am Chem Soc; 2003 Apr; 125(14):4342-9. PubMed ID: 12670258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys.
    Krenke T; Duman E; Acet M; Wassermann EF; Moya X; Mañosa L; Planes A
    Nat Mater; 2005 Jun; 4(6):450-4. PubMed ID: 15895096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trigonal-bipyramidal metal cyanide complexes: a versatile platform for the systematic assessment of the magnetic properties of Prussian blue materials.
    Funck KE; Hilfiger MG; Berlinguette CP; Shatruk M; Wernsdorfer W; Dunbar KR
    Inorg Chem; 2009 Apr; 48(8):3438-52. PubMed ID: 19361244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and magnetism of [n-BuNH3]12[Cu4(GeW9O34)2].14H2O sandwiching a rhomblike Cu4(8+) tetragon through alpha-Keggin linkage.
    Yamase T; Abe H; Ishikawa E; Nojiri H; Ohshima Y
    Inorg Chem; 2009 Jan; 48(1):138-48. PubMed ID: 19067591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties.
    Maspoch D; Ruiz-Molina D; Wurst K; Domingo N; Cavallini M; Biscarini F; Tejada J; Rovira C; Veciana J
    Nat Mater; 2003 Mar; 2(3):190-5. PubMed ID: 12612678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the catalytic effect of NiO nanoparticles on the thermal decomposition of TEGDN/NC propellant.
    Wei W; Jiang X; Lu L; Yang X; Wang X
    J Hazard Mater; 2009 Sep; 168(2-3):838-42. PubMed ID: 19299086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen bonds as structural directive towards unusual polynuclear complexes: synthesis, structure, and magnetic properties of copper(II) and nickel(II) complexes with a 2-aminoglucose ligand.
    Burkhardt A; Spielberg ET; Simon S; Görls H; Buchholz A; Plass W
    Chemistry; 2009; 15(5):1261-71. PubMed ID: 19101969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal expansion of silver iodide-silver molybdate glasses at low temperatures.
    Mandanici A; Raimondo A; Cutroni M; Ramos MA; Rodrigo JG; Vieira S; Armellini C; Rocca F
    J Chem Phys; 2009 May; 130(20):204508. PubMed ID: 19485458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2: an atomic pair distribution function analysis.
    Chapman KW; Chupas PJ; Kepert CJ
    J Am Chem Soc; 2005 Nov; 127(44):15630-6. PubMed ID: 16262430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.