BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19058013)

  • 1. Attachment and response of human fibroblast and breast cancer cells to three dimensional silicon microstructures of different geometries.
    Nikkhah M; Strobl JS; Agah M
    Biomed Microdevices; 2009 Apr; 11(2):429-41. PubMed ID: 19058013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoskeletal role in differential adhesion patterns of normal fibroblasts and breast cancer cells inside silicon microenvironments.
    Nikkhah M; Strobl JS; Peddi B; Agah M
    Biomed Microdevices; 2009 Jun; 11(3):585-95. PubMed ID: 19089620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cytoskeletal organization of breast carcinoma and fibroblast cells inside three dimensional (3-D) isotropic silicon microstructures.
    Nikkhah M; Strobl JS; De Vita R; Agah M
    Biomaterials; 2010 Jun; 31(16):4552-61. PubMed ID: 20207413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometry-dependent behavior of fibroblast cells in three-dimensional silicon microstructures.
    Nikkhah M; Strobl JS; Agah M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6078-81. PubMed ID: 18003401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MCF10A and MDA-MB-231 human breast basal epithelial cell co-culture in silicon micro-arrays.
    Nikkhah M; Strobl JS; Schmelz EM; Roberts PC; Zhou H; Agah M
    Biomaterials; 2011 Oct; 32(30):7625-32. PubMed ID: 21764441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actions of the anti-cancer drug suberoylanilide hydroxamic acid (SAHA) on human breast cancer cytoarchitecture in silicon microstructures.
    Strobl JS; Nikkhah M; Agah M
    Biomaterials; 2010 Sep; 31(27):7043-50. PubMed ID: 20579727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of silicon and gold-patterned silicon surfaces for improved biocompatibility and cell patterning selectivity.
    Lan S; Veiseh M; Zhang M
    Biosens Bioelectron; 2005 Mar; 20(9):1697-708. PubMed ID: 15681184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) microstructures using soft lithography for scaffold applications.
    Wang Z; Hu H; Wang Y; Wang Y; Wu Q; Liu L; Chen G
    Biomaterials; 2006 Apr; 27(12):2550-7. PubMed ID: 16364433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in the nano-micro range.
    Biela SA; Su Y; Spatz JP; Kemkemer R
    Acta Biomater; 2009 Sep; 5(7):2460-6. PubMed ID: 19410529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of silicon nanoporous membranes and ECM-based microenvironments on neurosecretory cells.
    Lopez CA; Fleischman AJ; Roy S; Desai TA
    Biomaterials; 2006 Jun; 27(16):3075-83. PubMed ID: 16457879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of cellular behaviors on concave and convex microstructures fabricated from elastic PDMS membranes.
    Park JY; Lee DH; Lee EJ; Lee SH
    Lab Chip; 2009 Jul; 9(14):2043-9. PubMed ID: 19568673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guided cell patterning on gold-silicon dioxide substrates by surface molecular engineering.
    Veiseh M; Wickes BT; Castner DG; Zhang M
    Biomaterials; 2004 Jul; 25(16):3315-24. PubMed ID: 14980426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy.
    Han A; Yang L; Frazier AB
    Clin Cancer Res; 2007 Jan; 13(1):139-43. PubMed ID: 17200348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cells preferentially grow on rough substrates.
    Gentile F; Tirinato L; Battista E; Causa F; Liberale C; di Fabrizio EM; Decuzzi P
    Biomaterials; 2010 Oct; 31(28):7205-12. PubMed ID: 20637503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications.
    Bajaj P; Akin D; Gupta A; Sherman D; Shi B; Auciello O; Bashir R
    Biomed Microdevices; 2007 Dec; 9(6):787-94. PubMed ID: 17530409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hierarchical response of cells to perpendicular micro- and nanometric textural cues.
    Seunarine K; Curtis AS; Meredith DO; Wilkinson CD; Riehle MO; Gadegaard N
    IEEE Trans Nanobioscience; 2009 Sep; 8(3):219-25. PubMed ID: 19278933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of breast implant surfaces and correlation with fibroblast adhesion.
    Valencia-Lazcano AA; Alonso-Rasgado T; Bayat A
    J Mech Behav Biomed Mater; 2013 May; 21():133-48. PubMed ID: 23545265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An inverted microcontact printing method on topographically structured polystyrene chips for arrayed micro-3-D culturing of single cells.
    Dusseiller MR; Schlaepfer D; Koch M; Kroschewski R; Textor M
    Biomaterials; 2005 Oct; 26(29):5917-25. PubMed ID: 15949557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-channel 3-D cell culture device integrated on a silicon chip for anticancer drug sensitivity test.
    Torisawa YS; Shiku H; Yasukawa T; Nishizawa M; Matsue T
    Biomaterials; 2005 May; 26(14):2165-72. PubMed ID: 15576192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure optimization of microvascular scaffolds.
    Wang GJ; Hsu YF
    Biomed Microdevices; 2006 Mar; 8(1):51-8. PubMed ID: 16491331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.