These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. [Glycosyl isomerization based on the biosynthesis of natural-product sugar from microorganism]. Sun W; Li HF; Chen J; Wang GJ; Yang ZY Yao Xue Xue Bao; 2013 Feb; 48(2):179-86. PubMed ID: 23672013 [TBL] [Abstract][Full Text] [Related]
4. Chapter 12. The power of glycosyltransferases to generate bioactive natural compounds. Härle J; Bechthold A Methods Enzymol; 2009; 458():309-33. PubMed ID: 19374988 [TBL] [Abstract][Full Text] [Related]
5. Features and applications of bacterial glycosyltransferases: current state and prospects. Luzhetskyy A; Bechthold A Appl Microbiol Biotechnol; 2008 Oct; 80(6):945-52. PubMed ID: 18777021 [TBL] [Abstract][Full Text] [Related]
6. The impact of enzyme engineering upon natural product glycodiversification. Williams GJ; Gantt RW; Thorson JS Curr Opin Chem Biol; 2008 Oct; 12(5):556-64. PubMed ID: 18678278 [TBL] [Abstract][Full Text] [Related]
7. Engineering the glycosylation of natural products in actinomycetes. Salas JA; Méndez C Trends Microbiol; 2007 May; 15(5):219-32. PubMed ID: 17412593 [TBL] [Abstract][Full Text] [Related]
8. Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. Williams GJ; Zhang C; Thorson JS Nat Chem Biol; 2007 Oct; 3(10):657-62. PubMed ID: 17828251 [TBL] [Abstract][Full Text] [Related]
9. A "biphasic glycosyltransferase high-throughput screen" identifies novel anthraquinone glycosides in the diversification of phenolic natural products. Mohideen FI; Kwan DH J Biol Chem; 2023 Mar; 299(3):102931. PubMed ID: 36682498 [TBL] [Abstract][Full Text] [Related]
11. Achievements and impacts of glycosylation reactions involved in natural product biosynthesis in prokaryotes. Song MC; Kim E; Ban YH; Yoo YJ; Kim EJ; Park SR; Pandey RP; Sohng JK; Yoon YJ Appl Microbiol Biotechnol; 2013 Jul; 97(13):5691-704. PubMed ID: 23715852 [TBL] [Abstract][Full Text] [Related]
12. The Sweet Side of Plant-Specialized Metabolism. Louveau T; Osbourn A Cold Spring Harb Perspect Biol; 2019 Dec; 11(12):. PubMed ID: 31235546 [TBL] [Abstract][Full Text] [Related]
13. Glycosyltransferases, important tools for drug design. Luzhetskyy A; Méndez C; Salas JA; Bechthold A Curr Top Med Chem; 2008; 8(8):680-709. PubMed ID: 18473892 [TBL] [Abstract][Full Text] [Related]
14. Recombinant E. coli prototype strains for in vivo glycorandomization. Williams GJ; Yang J; Zhang C; Thorson JS ACS Chem Biol; 2011 Jan; 6(1):95-100. PubMed ID: 20886903 [TBL] [Abstract][Full Text] [Related]
15. Biotechnological advances in UDP-sugar based glycosylation of small molecules. De Bruyn F; Maertens J; Beauprez J; Soetaert W; De Mey M Biotechnol Adv; 2015; 33(2):288-302. PubMed ID: 25698505 [TBL] [Abstract][Full Text] [Related]
16. Reversible sugar transfer by glycosyltransferases as a tool for natural product (bio)synthesis. Bode HB; Müller R Angew Chem Int Ed Engl; 2007; 46(13):2147-50. PubMed ID: 17300123 [No Abstract] [Full Text] [Related]
17. Promiscuity Characteristics of Versatile Plant Glycosyltransferases for Natural Product Glycodiversification. Zhang LJ; Wang DG; Zhang P; Wu C; Li YZ ACS Synth Biol; 2022 Feb; 11(2):812-819. PubMed ID: 35076210 [TBL] [Abstract][Full Text] [Related]