These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

623 related articles for article (PubMed ID: 19058170)

  • 21. The structural biology of enzymes involved in natural product glycosylation.
    Singh S; Phillips GN; Thorson JS
    Nat Prod Rep; 2012 Oct; 29(10):1201-37. PubMed ID: 22688446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent progress in synthesis of carbohydrates with sugar nucleotide-dependent glycosyltransferases.
    Na L; Li R; Chen X
    Curr Opin Chem Biol; 2021 Apr; 61():81-95. PubMed ID: 33310623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure, mechanism and engineering of plant natural product glycosyltransferases.
    Wang X
    FEBS Lett; 2009 Oct; 583(20):3303-9. PubMed ID: 19796637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fermenting next generation glycosylated therapeutics.
    Chen X
    ACS Chem Biol; 2011 Jan; 6(1):14-7. PubMed ID: 21250649
    [TBL] [Abstract][Full Text] [Related]  

  • 25.
    Mohideen FI; Nguyen LH; Richard JD; Ouadhi S; Kwan DH
    ACS Chem Biol; 2022 Dec; 17(12):3331-3340. PubMed ID: 34751552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neoglycorandomization and chemoenzymatic glycorandomization: two complementary tools for natural product diversification.
    Langenhan JM; Griffith BR; Thorson JS
    J Nat Prod; 2005 Nov; 68(11):1696-711. PubMed ID: 16309329
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineered jadomycin analogues with altered sugar moieties revealing JadS as a substrate flexible O-glycosyltransferase.
    Li L; Pan G; Zhu X; Fan K; Gao W; Ai G; Ren J; Shi M; Olano C; Salas JA; Yang K
    Appl Microbiol Biotechnol; 2017 Jul; 101(13):5291-5300. PubMed ID: 28429060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New Sipanmycin Analogues Generated by Combinatorial Biosynthesis and Mutasynthesis Approaches Relying on the Substrate Flexibility of Key Enzymes in the Biosynthetic Pathway.
    Malmierca MG; Pérez-Victoria I; Martín J; Reyes F; Méndez C; Salas JA; Olano C
    Appl Environ Microbiol; 2020 Jan; 86(3):. PubMed ID: 31732573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glycosyltransferases involved in the biosynthesis of biologically active natural products that contain oligosaccharides.
    Luzhetskyy A; Vente A; Bechthold A
    Mol Biosyst; 2005 Jul; 1(2):117-26. PubMed ID: 16880973
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Altering the glycosylation pattern of bioactive compounds.
    Méndez C; Salas JA
    Trends Biotechnol; 2001 Nov; 19(11):449-56. PubMed ID: 11602309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemoenzymatic and bioenzymatic synthesis of carbohydrate containing natural products.
    Ostash B; Yan X; Fedorenko V; Bechthold A
    Top Curr Chem; 2010; 297():105-48. PubMed ID: 21495258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two Trifunctional Leloir Glycosyltransferases as Biocatalysts for Natural Products Glycodiversification.
    Pandey RP; Bashyal P; Parajuli P; Yamaguchi T; Sohng JK
    Org Lett; 2019 Oct; 21(19):8058-8064. PubMed ID: 31550168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cooperative Involvement of Glycosyltransferases in the Transfer of Amino Sugars during the Biosynthesis of the Macrolactam Sipanmycin by Streptomyces sp. Strain CS149.
    Malmierca MG; Pérez-Victoria I; Martín J; Reyes F; Méndez C; Olano C; Salas JA
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30006405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering the enzyme toolbox to tailor glycosylation in small molecule natural products and protein biologics.
    Ouadhi S; López DMV; Mohideen FI; Kwan DH
    Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 36444941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A systematic investigation of the synthetic utility of glycopeptide glycosyltransferases.
    Oberthür M; Leimkuhler C; Kruger RG; Lu W; Walsh CT; Kahne D
    J Am Chem Soc; 2005 Aug; 127(30):10747-52. PubMed ID: 16045364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineered production of bioactive polyphenolic O-glycosides.
    Ren J; Barton CD; Zhan J
    Biotechnol Adv; 2023; 65():108146. PubMed ID: 37028465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycorandomization: A promising diversification strategy for the drug development.
    Goel B; Tripathi N; Mukherjee D; Jain SK
    Eur J Med Chem; 2021 Mar; 213():113156. PubMed ID: 33460832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nucleotide deoxysugars: essential tools for the glycosylation engineering of novel bioactive compounds.
    Rupprath C; Schumacher T; Elling L
    Curr Med Chem; 2005; 12(14):1637-75. PubMed ID: 16022664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. "Mix and match" auto-assembly of glycosyltransferase domains delivers biocatalysts with improved substrate promiscuity.
    Bretagne D; Pâris A; Matthews D; Fougère L; Burrini N; Wagner GK; Daniellou R; Lafite P
    J Biol Chem; 2024 Mar; 300(3):105747. PubMed ID: 38354783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural dissection of unnatural ginsenoside-biosynthetic UDP-glycosyltransferase Bs-YjiC from Bacillus subtilis for substrate promiscuity.
    Dai L; Qin L; Hu Y; Huang JW; Hu Z; Min J; Sun Y; Guo RT
    Biochem Biophys Res Commun; 2021 Jan; 534():73-78. PubMed ID: 33310191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.