BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 19058304)

  • 21. Genipin enhances Mrp2 (Abcc2)-mediated bile formation and organic anion transport in rat liver.
    Shoda J; Miura T; Utsunomiya H; Oda K; Yamamoto M; Kano M; Ikegami T; Tanaka N; Akita H; Ito K; Suzuki H; Sugiyama Y
    Hepatology; 2004 Jan; 39(1):167-78. PubMed ID: 14752835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pharmacogenetics of hepatocellular transporters.
    Pauli-Magnus C; Meier PJ
    Pharmacogenetics; 2003 Apr; 13(4):189-98. PubMed ID: 12668915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short-term regulation of canalicular transport.
    Häussinger D; Schmitt M; Weiergräber O; Kubitz R
    Semin Liver Dis; 2000; 20(3):307-21. PubMed ID: 11076398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of rat organic anion transporters in bile salt-induced cholestatic hepatitis: effect of ursodeoxycholate.
    Rost D; Herrmann T; Sauer P; Schmidts HL; Stieger B; Meier PJ; Stremmel W; Stiehl A
    Hepatology; 2003 Jul; 38(1):187-95. PubMed ID: 12830001
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trafficking of the plasma membrane gamma-aminobutyric acid transporter GAT1. Size and rates of an acutely recycling pool.
    Wang D; Quick MW
    J Biol Chem; 2005 May; 280(19):18703-9. PubMed ID: 15778221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tauroursodeoxycholic acid inserts the apical conjugate export pump, Mrp2, into canalicular membranes and stimulates organic anion secretion by protein kinase C-dependent mechanisms in cholestatic rat liver.
    Beuers U; Bilzer M; Chittattu A; Kullak-Ublick GA; Keppler D; Paumgartner G; Dombrowski F
    Hepatology; 2001 May; 33(5):1206-16. PubMed ID: 11343250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered localization and activity of canalicular Mrp2 in estradiol-17beta-D-glucuronide-induced cholestasis.
    Mottino AD; Cao J; Veggi LM; Crocenzi F; Roma MG; Vore M
    Hepatology; 2002 Jun; 35(6):1409-19. PubMed ID: 12029626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impaired localisation and transport function of canalicular Bsep in taurolithocholate induced cholestasis in the rat.
    Crocenzi FA; Mottino AD; Sánchez Pozzi EJ; Pellegrino JM; Rodríguez Garay EA; Milkiewicz P; Vore M; Coleman R; Roma MG
    Gut; 2003 Aug; 52(8):1170-7. PubMed ID: 12865277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular regulation of sinusoidal liver bile acid transporters during cholestasis.
    Gartung C; Matern S
    Yale J Biol Med; 1997; 70(4):355-63. PubMed ID: 9626756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ca2+-dependent protein kinase C isoforms induce cholestasis in rat liver.
    Kubitz R; Saha N; Kühlkamp T; Dutta S; vom Dahl S; Wettstein M; Häussinger D
    J Biol Chem; 2004 Mar; 279(11):10323-30. PubMed ID: 14679204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hepatocellular bile salt transport: lessons from cholestasis.
    Trauner M; Fickert P; Stauber RE
    Can J Gastroenterol; 2000 Nov; 14 Suppl D():99D-104D. PubMed ID: 11110621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bile Acids in Cholestasis and its Treatment.
    Arab JP; Cabrera D; Arrese M
    Ann Hepatol; 2017 Nov; 16(Suppl. 1: s3-105.):s53-s57. PubMed ID: 29080340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitogen-activated protein kinases are involved in hepatocanalicular dysfunction and cholestasis induced by oxidative stress.
    Toledo FD; Basiglio CL; Barosso IR; Boaglio AC; Zucchetti AE; Sánchez Pozzi EJ; Roma MG
    Arch Toxicol; 2017 Jun; 91(6):2391-2403. PubMed ID: 27913845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of hepatic content and biliary excretion of P-glycoproteins in hepatocellular and obstructive cholestasis in the rat.
    Accatino L; Pizarro M; Solís N; Koenig CS; Vollrath V; Chianale J
    J Hepatol; 1996 Sep; 25(3):349-61. PubMed ID: 8895015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of obstructive cholestasis on membrane traffic and domain-specific expression of plasma membrane proteins in rat liver parenchymal cells.
    Stieger B; Meier PJ; Landmann L
    Hepatology; 1994 Jul; 20(1 Pt 1):201-12. PubMed ID: 7517382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hepatocellular transporters and cholestasis.
    Pauli-Magnus C; Meier PJ
    J Clin Gastroenterol; 2005 Apr; 39(4 Suppl 2):S103-10. PubMed ID: 15758645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pathogenesis of cholestatic liver disease and therapeutic approaches.
    Hirschfield GM; Heathcote EJ; Gershwin ME
    Gastroenterology; 2010 Nov; 139(5):1481-96. PubMed ID: 20849855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spironolactone ameliorates lipopolysaccharide-induced cholestasis in rats by improving Mrp2 function: Role of transcriptional and post-transcriptional mechanisms.
    Razori MV; Martín PL; Maidagan PM; Barosso IR; Ciriaci N; Andermatten RB; Sánchez Pozzi EJ; Basiglio CL; Ruiz ML; Roma MG
    Life Sci; 2020 Oct; 259():118352. PubMed ID: 32860804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ubiquitously expressed secretory carrier membrane proteins (SCAMPs) 1-4 mark different pathways and exhibit limited constitutive trafficking to and from the cell surface.
    Castle A; Castle D
    J Cell Sci; 2005 Aug; 118(Pt 16):3769-80. PubMed ID: 16105885
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Life and Death of Fungal Transporters under the Challenge of Polarity.
    Dimou S; Diallinas G
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.