BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19058806)

  • 1. Probabilistic failure analysis of bone using a finite element model of mineral-collagen composites.
    Dong XN; Guda T; Millwater HR; Wang X
    J Biomech; 2009 Feb; 42(3):202-9. PubMed ID: 19058806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of microdamage formation using a mineral-collagen composite model of bone.
    Wang X; Qian C
    J Biomech; 2006; 39(4):595-602. PubMed ID: 16439230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of mineral-collagen interfacial behavior on the microdamage progression in bone using a probabilistic cohesive finite element model.
    Luo Q; Nakade R; Dong X; Rong Q; Wang X
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):943-52. PubMed ID: 21783104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of water and mineral-collagen interfacial bonding on microdamage progression in bone.
    Luo Q; Leng H; Wang X; Zhou Y; Rong Q
    J Orthop Res; 2014 Feb; 32(2):217-23. PubMed ID: 24122969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new model to simulate the elastic properties of mineralized collagen fibril.
    Yuan F; Stock SR; Haeffner DR; Almer JD; Dunand DC; Brinson LC
    Biomech Model Mechanobiol; 2011 Apr; 10(2):147-60. PubMed ID: 20521160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic deformation of mineralized collagen fibrils: an equivalent inclusion based composite model.
    Akkus O
    J Biomech Eng; 2005 Jun; 127(3):383-90. PubMed ID: 16060345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational investigation of ultrastructural behavior of bone using a cohesive finite element approach.
    Maghsoudi-Ganjeh M; Lin L; Wang X; Zeng X
    Biomech Model Mechanobiol; 2019 Apr; 18(2):463-478. PubMed ID: 30470944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior.
    Wang Y; Ural A
    J Biomech; 2018 Jan; 66():70-77. PubMed ID: 29137726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive behaviour of uniaxially aligned individual mineralised collagen fibres at the micro- and nanoscale.
    Groetsch A; Gourrier A; Schwiedrzik J; Sztucki M; Beck RJ; Shephard JD; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2019 Apr; 89():313-329. PubMed ID: 30858052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromechanical modelling of transverse fracture behaviour of lamellar bone using a phase-field damage model: The role of non-collagenous proteins and mineralised collagen fibrils.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2024 May; 153():106472. PubMed ID: 38432183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of cancellous bone quality in severe osteoarthrosis: bone mineral density, mechanics, and microdamage.
    Fazzalari NL; Forwood MR; Smith K; Manthey BA; Herreen P
    Bone; 1998 Apr; 22(4):381-8. PubMed ID: 9556139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral packing of mineral crystals in bone collagen fibrils.
    Burger C; Zhou HW; Wang H; Sics I; Hsiao BS; Chu B; Graham L; Glimcher MJ
    Biophys J; 2008 Aug; 95(4):1985-92. PubMed ID: 18359799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomechanical properties of mineralised collagen microfibrils based on finite elements method: biomechanical role of cross-links.
    Barkaoui A; Hambli R
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1590-601. PubMed ID: 23439084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational investigation of the effect of water on the nanomechanical behavior of bone.
    Maghsoudi-Ganjeh M; Wang X; Zeng X
    J Mech Behav Biomed Mater; 2020 Jan; 101():103454. PubMed ID: 31586882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale imaging of bone microdamage.
    Poundarik AA; Vashishth D
    Connect Tissue Res; 2015 Apr; 56(2):87-98. PubMed ID: 25664772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physically based 3D finite element model of a single mineralized collagen microfibril.
    Hambli R; Barkaoui A
    J Theor Biol; 2012 May; 301():28-41. PubMed ID: 22365909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone.
    Vercher-Martínez A; Giner E; Arango C; Fuenmayor FJ
    J Mech Behav Biomed Mater; 2015 Feb; 42():243-56. PubMed ID: 25498297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Failure of mineralized collagen fibrils: modeling the role of collagen cross-linking.
    Siegmund T; Allen MR; Burr DB
    J Biomech; 2008; 41(7):1427-35. PubMed ID: 18406410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.