These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19058806)

  • 21. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone.
    Deymier-Black AC; Yuan F; Singhal A; Almer JD; Brinson LC; Dunand DC
    Acta Biomater; 2012 Jan; 8(1):253-61. PubMed ID: 21878399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of geometrical structure variations on strength and damage onset of cortical bone using multi-scale cohesive zone based finite element method.
    Atthapreyangkul A; Hoffman M; Pearce G; Standard O
    J Mech Behav Biomed Mater; 2023 Feb; 138():105578. PubMed ID: 36427415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Can a continuous mineral foam explain the stiffening of aged bone tissue? A micromechanical approach to mineral fusion in musculoskeletal tissues.
    Penta R; Raum K; Grimal Q; Schrof S; Gerisch A
    Bioinspir Biomim; 2016 May; 11(3):035004. PubMed ID: 27194094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting trabecular bone microdamage initiation and accumulation using a non-linear perfect damage model.
    Kosmopoulos V; Keller TS
    Med Eng Phys; 2008 Jul; 30(6):725-32. PubMed ID: 17881275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating the post-yield behavior of mineralized bone fibril arrays using a 3D non-linear finite element unit-cell model.
    Alizadeh E; Omairey S; Zysset P
    J Mech Behav Biomed Mater; 2023 Mar; 139():105660. PubMed ID: 36638635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale.
    Fielder M; Nair AK
    Biomech Model Mechanobiol; 2019 Feb; 18(1):57-68. PubMed ID: 30088113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Postfailure modulus strongly affects microcracking and mechanical property change in human iliac cancellous bone: a study using a 2D nonlinear finite element method.
    Wang X; Zauel RR; Fyhrie DP
    J Biomech; 2008 Aug; 41(12):2654-8. PubMed ID: 18672244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cooperative deformation of mineral and collagen in bone at the nanoscale.
    Gupta HS; Seto J; Wagermaier W; Zaslansky P; Boesecke P; Fratzl P
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17741-6. PubMed ID: 17095608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-yield nanomechanics of human cortical bone in compression using synchrotron X-ray scattering techniques.
    Dong XN; Almer JD; Wang X
    J Biomech; 2011 Feb; 44(4):676-82. PubMed ID: 21112589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An embedded element based 2D finite element model for the strength prediction of mineralized collagen fibril using Monte-Carlo type of simulations.
    Sharma R; Awasthi A
    J Biomech; 2020 Jul; 108():109867. PubMed ID: 32635994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The importance of intrinsic damage properties to bone fragility: a finite element study.
    Hardisty MR; Zauel R; Stover SM; Fyhrie DP
    J Biomech Eng; 2013 Jan; 135(1):011004. PubMed ID: 23363215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Finite element 3D modeling of mechanical behavior of mineralized collagen microfibrils.
    Barkaoui A; Hambli R
    J Appl Biomater Biomech; 2011; 9(3):199-205. PubMed ID: 22139755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization.
    Nikolov S; Raabe D
    Biophys J; 2008 Jun; 94(11):4220-32. PubMed ID: 18310256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A multiscale finite element investigation on the role of intra- and extra-fibrillar mineralisation on the elastic properties of bone tissue.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2022 May; 129():105139. PubMed ID: 35248874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring the hierarchical structure of lamellar bone and its impact on fracture behaviour: A computational study using a phase field damage model.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2024 May; 153():106471. PubMed ID: 38458079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of damage to trabecular bone of the osteoporotic human acetabulum at small strains using nonlinear micro-finite element analyses.
    Ding H; Zhu ZA; Dai KR
    Chin Med J (Engl); 2009 Sep; 122(17):2041-7. PubMed ID: 19781393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A three-dimensional multiscale finite element model of bone coupling mineralized collagen fibril networks and lamellae.
    Wang Y; Ural A
    J Biomech; 2020 Nov; 112():110041. PubMed ID: 32950759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Correlation between degree of mineralization and collagen cross-links as determinants of bone quality].
    Saito M; Fujii K
    Clin Calcium; 2005 Jun; 15(6):939-45. PubMed ID: 15930704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonlinear micro finite element models based on digital volume correlation measurements predict early microdamage in newly formed bone.
    Peña Fernández M; Sasso SJ; McPhee S; Black C; Kanczler J; Tozzi G; Wolfram U
    J Mech Behav Biomed Mater; 2022 Aug; 132():105303. PubMed ID: 35671669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.