These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 19058850)
1. Copper sensitivity of wild ornamental fish of the Amazon. Duarte RM; Menezes AC; da Silveira Rodrigues L; de Almeida-Val VM; Val AL Ecotoxicol Environ Saf; 2009 Mar; 72(3):693-8. PubMed ID: 19058850 [TBL] [Abstract][Full Text] [Related]
2. The biotic ligand model as a promising tool to predict Cu toxicity in amazon blackwaters. Duarte RM; Crémazy A; Wood CM; Almeida-Val VMF; Val AL Environ Pollut; 2024 Jan; 341():122988. PubMed ID: 37992954 [TBL] [Abstract][Full Text] [Related]
3. Investigating copper toxicity in the tropical fish cardinal tetra (Paracheirodon axelrodi) in natural Amazonian waters: Measurements, modeling, and reality. Crémazy A; Wood CM; Smith DS; Ferreira MS; Johannsson OE; Giacomin M; Val AL Aquat Toxicol; 2016 Nov; 180():353-363. PubMed ID: 27969548 [TBL] [Abstract][Full Text] [Related]
4. Investigating the mechanisms of dissolved organic matter protection against copper toxicity in fish of Amazon's black waters. Crémazy A; Braz-Mota S; Brix KV; Duarte RM; Val AL; Wood CM Sci Total Environ; 2022 Oct; 843():157032. PubMed ID: 35779728 [TBL] [Abstract][Full Text] [Related]
5. The Effects of Natural Suspended Solids on Copper Toxicity to the Cardinal Tetra in Amazonian River Waters. Crémazy A; Wood CM; Smith DS; Val AL Environ Toxicol Chem; 2019 Dec; 38(12):2708-2718. PubMed ID: 31499591 [TBL] [Abstract][Full Text] [Related]
6. Potential of the Biotic Ligand Model (BLM) to Predict Copper Toxicity in the White-Water of the Solimões-Amazon River. Pont GD; Domingos FX; Fernandes-de-Castilho M; Val AL Bull Environ Contam Toxicol; 2017 Jan; 98(1):27-32. PubMed ID: 27888328 [TBL] [Abstract][Full Text] [Related]
7. The influence of the Amazonian floodplain ecosystems on the trace element dynamics of the Amazon River mainstem (Brazil). Viers J; Barroux G; Pinelli M; Seyler P; Oliva P; Dupré B; Boaventura GR Sci Total Environ; 2005 Mar; 339(1-3):219-32. PubMed ID: 15740771 [TBL] [Abstract][Full Text] [Related]
8. Diverse strategies for ion regulation in fish collected from the ion-poor, acidic Rio Negro. Gonzalez RJ; Wilson RW; Wood CM; Patrick ML; Val AL Physiol Biochem Zool; 2002; 75(1):37-47. PubMed ID: 11880976 [TBL] [Abstract][Full Text] [Related]
9. Ionoregulatory Characteristics of Non-Rio Negro Characiforms and Cichlids. Gonzalez RJ; Jones SL; Nguyen TV Physiol Biochem Zool; 2017; 90(3):407-414. PubMed ID: 28384425 [TBL] [Abstract][Full Text] [Related]
10. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity. Kiaune L; Singhasemanon N Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846 [TBL] [Abstract][Full Text] [Related]
11. Toxicity of copper to early-life stage Kootenai River white sturgeon, Columbia River white sturgeon, and rainbow trout. Little EE; Calfee RD; Linder G Arch Environ Contam Toxicol; 2012 Oct; 63(3):400-8. PubMed ID: 22890615 [TBL] [Abstract][Full Text] [Related]
12. Influence of flow-through and renewal exposures on the toxicity of copper to rainbow trout. Welsh PG; Lipton J; Mebane CA; Marr JC Ecotoxicol Environ Saf; 2008 Feb; 69(2):199-208. PubMed ID: 17517436 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of toxic action of copper and copper nanoparticles in two Amazon fish species: Dwarf cichlid (Apistogramma agassizii) and cardinal tetra (Paracheirodon axelrodi). Braz-Mota S; Campos DF; MacCormack TJ; Duarte RM; Val AL; Almeida-Val VMF Sci Total Environ; 2018 Jul; 630():1168-1180. PubMed ID: 29554738 [TBL] [Abstract][Full Text] [Related]
14. A comparison of the copper sensitivity of two economically important saltwater mussel species and a review of previously reported copper toxicity data for mussels: important implications for determining future ambient copper saltwater criteria in the USA. Arnold WR; Cotsifas JS; Smith DS; Le Page S; Gruenthal KM Environ Toxicol; 2009 Dec; 24(6):618-28. PubMed ID: 19065681 [TBL] [Abstract][Full Text] [Related]
15. Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behaviour. Vieira LR; Gravato C; Soares AM; Morgado F; Guilhermino L Chemosphere; 2009 Sep; 76(10):1416-27. PubMed ID: 19628251 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of acute copper toxicity to juvenile freshwater mussels (fatmucket, Lampsilis siliquoidea) in natural and reconstituted waters. Wang N; Mebane CA; Kunz JL; Ingersoll CG; May TW; Arnold WR; Santore RC; Augspurger T; Dwyer J; Barnhart MC Environ Toxicol Chem; 2009 Nov; 28(11):2367-77. PubMed ID: 19572770 [TBL] [Abstract][Full Text] [Related]
17. Sensitivity of the glochidia (larvae) of freshwater mussels to copper: assessing the effect of water hardness and dissolved organic carbon on the sensitivity of endangered species. Gillis PL; Mitchell RJ; Schwalb AN; McNichols KA; Mackie GL; Wood CM; Ackerman JD Aquat Toxicol; 2008 Jun; 88(2):137-45. PubMed ID: 18490065 [TBL] [Abstract][Full Text] [Related]
18. Methylmercury in a predatory fish (Cichla spp.) inhabiting the Brazilian Amazon. Kehrig Hdo A; Howard BM; Malm O Environ Pollut; 2008 Jul; 154(1):68-76. PubMed ID: 18262700 [TBL] [Abstract][Full Text] [Related]
19. Factors controlling Hg levels in two predatory fish species in the Negro river basin, Brazilian Amazon. Belger L; Forsberg BR Sci Total Environ; 2006 Aug; 367(1):451-9. PubMed ID: 16690103 [TBL] [Abstract][Full Text] [Related]
20. The influence of salinity and dissolved organic carbon on the toxicity of copper to the estuarine copepod, Eurytemora affinis. Hall LW; Anderson RD; Lewis BL; Arnold WR Arch Environ Contam Toxicol; 2008 Jan; 54(1):44-56. PubMed ID: 17721798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]