These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 19059201)

  • 41. Water-protein interactions of an arginine-rich membrane peptide in lipid bilayers investigated by solid-state nuclear magnetic resonance spectroscopy.
    Li S; Su Y; Luo W; Hong M
    J Phys Chem B; 2010 Mar; 114(11):4063-9. PubMed ID: 20199036
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of antimicrobial peptides from Australian tree frogs on anionic phospholipid membranes.
    Gehman JD; Luc F; Hall K; Lee TH; Boland MP; Pukala TL; Bowie JH; Aguilar MI; Separovic F
    Biochemistry; 2008 Aug; 47(33):8557-65. PubMed ID: 18652483
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solid-state NMR investigation of the selective disruption of lipid membranes by protegrin-1.
    Mani R; Buffy JJ; Waring AJ; Lehrer RI; Hong M
    Biochemistry; 2004 Nov; 43(43):13839-48. PubMed ID: 15504046
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Terminal charges modulate the pore forming activity of cationic amphipathic helices.
    Strandberg E; Bentz D; Wadhwani P; Bürck J; Ulrich AS
    Biochim Biophys Acta Biomembr; 2020 Apr; 1862(4):183243. PubMed ID: 32126225
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Peptide-lipid interactions of the beta-hairpin antimicrobial peptide tachyplesin and its linear derivatives from solid-state NMR.
    Doherty T; Waring AJ; Hong M
    Biochim Biophys Acta; 2006 Sep; 1758(9):1285-91. PubMed ID: 16678119
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Membrane Interactions of Latarcins: Antimicrobial Peptides from Spider Venom.
    Wadhwani P; Sekaran S; Strandberg E; Bürck J; Chugh A; Ulrich AS
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576320
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The antimicrobial peptide maculatin self assembles in parallel to form a pore in phospholipid bilayers.
    Sani MA; Le Brun AP; Separovic F
    Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183204. PubMed ID: 31981588
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Binding of cationic model peptides (KX)
    Hädicke A; Blume A
    Biochim Biophys Acta Biomembr; 2017 Mar; 1859(3):415-424. PubMed ID: 28034634
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Membrane interactions of synthetic peptides with antimicrobial potential: effect of electrostatic interactions and amphiphilicity.
    Fillion M; Valois-Paillard G; Lorin A; Noël M; Voyer N; Auger M
    Probiotics Antimicrob Proteins; 2015 Mar; 7(1):66-74. PubMed ID: 25422123
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antimicrobial peptides in action.
    Leontiadou H; Mark AE; Marrink SJ
    J Am Chem Soc; 2006 Sep; 128(37):12156-61. PubMed ID: 16967965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancing the membrane activity of Piscidin 1 through peptide metallation and the presence of oxidized lipid species: Implications for the unification of host defense mechanisms at lipid membranes.
    Paredes SD; Kim S; Rooney MT; Greenwood AI; Hristova K; Cotten ML
    Biochim Biophys Acta Biomembr; 2020 Jul; 1862(7):183236. PubMed ID: 32126226
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides.
    Velasco-Bolom JL; Corzo G; Garduño-Juárez R
    J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy.
    Yamaguchi S; Huster D; Waring A; Lehrer RI; Kearney W; Tack BF; Hong M
    Biophys J; 2001 Oct; 81(4):2203-14. PubMed ID: 11566791
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of amphipathic profile regularization on structural order and interaction with membrane models of two highly cationic branched peptides with β-sheet propensity.
    Serra I; Casu M; Ceccarelli M; Gameiro P; Rinaldi AC; Scorciapino MA
    Peptides; 2018 Jul; 105():28-36. PubMed ID: 29800587
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of linear cationic peptides with phospholipid membranes and polymers of sialic acid.
    Kuznetsov AS; Dubovskii PV; Vorontsova OV; Feofanov AV; Efremov RG
    Biochemistry (Mosc); 2014 May; 79(5):459-68. PubMed ID: 24954597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy.
    Bechinger B
    Biochim Biophys Acta; 1999 Dec; 1462(1-2):157-83. PubMed ID: 10590307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interaction of antimicrobial peptides from Australian amphibians with lipid membranes.
    Marcotte I; Wegener KL; Lam YH; Chia BC; de Planque MR; Bowie JH; Auger M; Separovic F
    Chem Phys Lipids; 2003 Jan; 122(1-2):107-20. PubMed ID: 12598042
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation of the mechanism of action of novel amphipathic peptides: insights from solid-state NMR studies of oriented lipid bilayers.
    Fillion M; Noël M; Lorin A; Voyer N; Auger M
    Biochim Biophys Acta; 2014 Sep; 1838(9):2173-9. PubMed ID: 24508758
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin.
    Ramamoorthy A; Thennarasu S; Lee DK; Tan A; Maloy L
    Biophys J; 2006 Jul; 91(1):206-16. PubMed ID: 16603496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.