BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19059415)

  • 1. In vivo dynamics of intracistronic transcriptional polarity.
    de Smit MH; Verlaan PW; van Duin J; Pleij CW
    J Mol Biol; 2009 Jan; 385(3):733-47. PubMed ID: 19059415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracistronic transcriptional polarity enhances translational repression: a new role for Rho.
    de Smit MH; Verlaan PW; van Duin J; Pleij CW
    Mol Microbiol; 2008 Sep; 69(5):1278-89. PubMed ID: 19172759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data.
    de Smit MH; van Duin J
    J Mol Biol; 1994 Nov; 244(2):144-50. PubMed ID: 7966326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA stem-loop enhanced expression of previously non-expressible genes.
    Paulus M; Haslbeck M; Watzele M
    Nucleic Acids Res; 2004 May; 32(9):e78. PubMed ID: 15163763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A competition mechanism regulates the translation of the Escherichia coli operon encoding ribosomal proteins L35 and L20.
    Haentjens-Sitri J; Allemand F; Springer M; Chiaruttini C
    J Mol Biol; 2008 Jan; 375(3):612-25. PubMed ID: 18037435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-cistronic expression plasmids for high-level gene expression in Escherichia coli preventing translational initiation inhibition caused by the intramolecular local secondary structure of mRNA.
    Kimura S; Umemura T; Iyanagi T
    J Biochem; 2005 Apr; 137(4):523-33. PubMed ID: 15858177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative correlation between mRNA secondary structure around the region downstream of the initiation codon and translational efficiency in Escherichia coli.
    Seo SW; Yang J; Jung GY
    Biotechnol Bioeng; 2009 Oct; 104(3):611-6. PubMed ID: 19579224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The antiterminator NusB enhances termination at a sub-optimal Rho site.
    Carlomagno MS; Nappo A
    J Mol Biol; 2001 May; 309(1):19-28. PubMed ID: 11491288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping contacts of the S12-S7 intercistronic region of str operon mRNA with ribosomal protein S7 of E. coli.
    Golovin A; Spiridonova V; Kopylov A
    FEBS Lett; 2006 Oct; 580(25):5858-62. PubMed ID: 17027976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo and in vitro evidence for an anti-Rho activity induced by the phage P4 polarity suppressor protein Psu.
    Linderoth NA; Tang G; Calendar R
    Virology; 1997 Jan; 227(1):131-41. PubMed ID: 9007066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and characterization of E. coli K12 strains in which the transcription of selected genes is desynchronized from translation.
    Proux F; Dreyfus M
    Methods Enzymol; 2008; 447():243-58. PubMed ID: 19161847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translation regulation of integrons gene cassette expression by the attC sites.
    Jacquier H; Zaoui C; Sanson-le Pors MJ; Mazel D; Berçot B
    Mol Microbiol; 2009 Jun; 72(6):1475-86. PubMed ID: 19486293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of an mRNA gradient depends on the promoter: an investigation of polarity in gene expression.
    Lee HJ; Jeon HJ; Ji SC; Yun SH; Lim HM
    J Mol Biol; 2008 Apr; 378(2):318-27. PubMed ID: 18374359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rho-dependent transcriptional polarity in the ilvGMEDA operon of wild-type Escherichia coli K12.
    Wek RC; Sameshima JH; Hatfield GW
    J Biol Chem; 1987 Nov; 262(31):15256-61. PubMed ID: 2822718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo involvement of mutated initiation factor IF1 in gene expression control at the translational level.
    Croitoru VV; Bucheli-Witschel M; Isaksson LA
    FEBS Lett; 2005 Feb; 579(5):995-1000. PubMed ID: 15710381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Regulation of translation of the distal lacZ gene in polycistronic mRNA by the ribosome stream from the proximal gene].
    Nikolenko GN; Kravchenko VV; Svarovskaia ES; Gileva IP; Likhoshvaĭ VA; Korobko VG
    Bioorg Khim; 1997 Mar; 23(3):200-4. PubMed ID: 9190791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription and decay of the lac messenger: role of an intergenic terminator.
    Murakawa GJ; Kwan C; Yamashita J; Nierlich DP
    J Bacteriol; 1991 Jan; 173(1):28-36. PubMed ID: 1702782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The functional stability of the lacZ transcript is sensitive towards sequence alterations immediately downstream of the ribosome binding site.
    Petersen C
    Mol Gen Genet; 1987 Aug; 209(1):179-87. PubMed ID: 3312955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RNA-protein complex: direct probing of the interfacial recognition dynamics and its correlation with biological functions.
    Xia T; Becker HC; Wan C; Frankel A; Roberts RW; Zewail AH
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8119-23. PubMed ID: 12815093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transcription terminator in the groEx gene of symbiotic X-bacteria expressed in Escherichia coli.
    Lee JE; Choi SH; Ahn TI
    Mol Cells; 2002 Feb; 13(1):35-42. PubMed ID: 11911472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.