BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 19059598)

  • 1. Adsorption of polar and non-polar fluids in carbon nanotube bundles: computer simulation and experimental studies.
    Wongkoblap A; Do DD; Wang K
    J Colloid Interface Sci; 2009 Mar; 331(1):65-76. PubMed ID: 19059598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Henry constant and isosteric heat at zero-loading for gas adsorption in carbon nanotubes.
    Do DD; Do HD; Wongkoblap A; Nicholson D
    Phys Chem Chem Phys; 2008 Dec; 10(48):7293-303. PubMed ID: 19060975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen and oxygen mixture adsorption on carbon nanotube bundles from molecular simulation.
    Jiang J; Sandler SI
    Langmuir; 2004 Dec; 20(25):10910-8. PubMed ID: 15568840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulations of hydrogen adsorption in alkali-doped single-walled carbon nanotubes.
    Hu N; Sun X; Hsu A
    J Chem Phys; 2005 Jul; 123(4):044708. PubMed ID: 16095385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization of single-walled carbon nanotube bundles by experiment and molecular simulation.
    Agnihotri S; Mota JP; Rostam-Abadi M; Rood MJ
    Langmuir; 2005 Feb; 21(3):896-904. PubMed ID: 15667165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental investigation of morphology and temperature effects on adsorption of organic vapors in single-walled carbon nanotubes.
    Agnihotri S; Mota JP; Rostam-Abadi M; Rood MJ
    J Phys Chem B; 2006 Apr; 110(15):7640-7. PubMed ID: 16610854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of carbon nanotube sizes from adsorption measurements and computer simulation.
    Kowalczyk P; Hołyst R; Tanaka H; Kaneko K
    J Phys Chem B; 2005 Aug; 109(30):14659-66. PubMed ID: 16852850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of water molecules inside a Au nanotube: a molecular dynamics study.
    Weng MH; Lee WJ; Ju SP; Chao CH; Hsieh NK; Chang JG; Chen HL
    J Chem Phys; 2008 May; 128(17):174705. PubMed ID: 18465934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual diffusion mechanism of argon confined in single-walled carbon nanotube bundles.
    Liu YC; Moore JD; Roussel TJ; Gubbins KE
    Phys Chem Chem Phys; 2010 Jul; 12(25):6632-40. PubMed ID: 20422115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regioselective competitive adsorption of water and organic vapor mixtures on pristine single-walled carbon nanotube bundles.
    Agnihotri S; Kim P; Zheng Y; Mota JP; Yang L
    Langmuir; 2008 Jun; 24(11):5746-54. PubMed ID: 18444668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of energy sites on adsorption of Lennard-Jones fluids and phase transition in carbon slit pore of finite length a computer simulation study.
    Wongkoblap A; Do DD
    J Colloid Interface Sci; 2006 May; 297(1):1-9. PubMed ID: 16297400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ar, CCl(4) and C(6)H(6) adsorption outside and inside of the bundles of multi-walled carbon nanotubes-simulation study.
    Furmaniak S; Terzyk AP; Gauden PA; Wesołowski RP; Kowalczyk P
    Phys Chem Chem Phys; 2009 Jul; 11(25):4982-95. PubMed ID: 19562128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of water in finite length carbon slit pore: comparison between computer simulation and experiment.
    Wongkoblap A; Do DD
    J Phys Chem B; 2007 Dec; 111(50):13949-56. PubMed ID: 18044864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explanation of the unusual peak of calorimetric heat in the adsorption of nitrogen, argon and methane on graphitized thermal carbon black.
    Wongkoblap A; Do DD; Nicholson D
    Phys Chem Chem Phys; 2008 Feb; 10(8):1106-13. PubMed ID: 18270611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of methane adsorption on single-walled carbon nanotubes.
    Albesa AG; Fertitta EA; Vicente JL
    Langmuir; 2010 Jan; 26(2):786-95. PubMed ID: 19899786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Canonical Monte Carlo simulation of adsorption of O2 and N2 mixture on single walled carbon nanotube at different temperatures and pressures.
    Rafati AA; Hashemianzadeh SM; Nojini ZB; Naghshineh N
    J Comput Chem; 2010 May; 31(7):1443-9. PubMed ID: 20082390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation studies on hydrogen sorption and its thermodynamics in covalently linked carbon nanotube scaffold.
    Biswas MM; Cagin T
    J Phys Chem B; 2010 Nov; 114(43):13752-63. PubMed ID: 20931989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Feb; 120(6):2913-22. PubMed ID: 15268439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative simulation study of nitrogen and ammonia adsorption on graphitized and nongraphitized carbon blacks.
    Herrera LF; Do DD; Birkett GR
    J Colloid Interface Sci; 2008 Apr; 320(2):415-22. PubMed ID: 18258251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum effects on hydrogen isotope adsorption on single-wall carbon nanohorns.
    Tanaka H; Kanoh H; Yudasaka M; Iijima S; Kaneko K
    J Am Chem Soc; 2005 May; 127(20):7511-6. PubMed ID: 15898801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.